
DECISION TREE LEARNING

[read Chapter 3]

[recommended exercises 3.1, 3.4]

• Decision tree representation

• ID3 learning algorithm

• Entropy, Information gain

• Overfitting

1

Decision Tree

Representation: Tree-structured plan of a set of at-

tributes to test in order to predict the output

1. In the simplest case:

• Each internal node tests on a attribute

• Each branch corresponds to an attribute

• Each leaf corresponds to a class label

2. In general:

• Each internal node corresponds to a test (on

input instances) with mutually exclusive and ex-

haustive outcomes —test may be univariate or multivariate

• Each branch corresponds to an outcome of a

test

• Each leaf corresponds to a class label

Learning: Build a DT consistent with a set of training examples T

for a concept C with classes C1, . . . , Ck

2

Example: Decision Tree for PlayTennis

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

There are far too many DT’s consistent with a training set

3

How many Decision Trees?

• Many DT’s are consistent with the same training set

• Simple DT’s are preferred over more complex DT’s

1. The simplest DT is one that takes fewest bits to

encode (least space, least memory)

2. Searching for the simplest DT that is consistent
with a training set is NP-hard. Solution:

a Use a greedy heuristics, or

b Restrict the hypothesis space to a subset of simple DT’s

Any Boolean function can be represented by a DT

B004

A013

B102

A111

cyx

11,01,10,00

11

10

01

00

1 0

c=A c=B

1 0

11

01

11 01

1 0

c=A c=B

10

00

10 00

c=A c=B

x 1 0
x

Tree 1 Tree 2Data set

x

11,01,10,00

y

E

x

a

m

p

l

e
s

Attributes Class

4

When to Consider Decision Trees

• Instances describable by attribute–value pairs

• Target function is discrete valued

• Disjunctive hypothesis may be required

• Possibly noisy training data

• Examples of application domains

1. Equipment or medical diagnosis

2. Credit risk analysis

3. Proteins function classifications and mutagenesis

4. . . .

• DT learning algorithms

1. Linear in size of the DT and the training set

2. Produce comprehensible results

3. Often among the first to be tried on a new data set

5

Building a Univariate Decision Tree

Given training set T for a concept with classes C1, . . . , Ck,

there are 3 cases

1. T contains elements all belonging to the same

class Ci: the DT for T is a leaf identifying class

Ci

2. T contains no elements: the DT for T is a leaf, but

the label is assigned heuristically, e.g. the majority

class in the parent of this node

3. T contains elements from different classes: T is

divided into subsets that seem to lead towards

collections of elements. A test t based on a single

attribute is chosen, and it partitions T into subsets

{T1, . . . , Tn}. The DT consists of a decision node

identifying the tested attribute, and one branch

for each outcome of the test. Then, the same

process is applied recursively to each Tj

Popular test: Information Gain

6

Information Gain Based DT Learner

• Learner’s task is to extract needed information from

a training set and store it in the form of a DT for

classification

• Start with the entire training set at the root

1. Recursively add nodes to the tree corresponding

to tests that yield the greatest expected reduction

in entropy (or the largest expected information

gain)

2. Until some termination criteria is met

Nature

Instance

Classifier

Class label

S1
S2

Sm

Training Data S

S

S

S

S
SE

imi

i

i

21
log)(

Si is the multi-set of examples belonging to class Ci

membership of a random instance from S = E(S)

On average, the information needed to convey the class membership of a

random instance from S is E(S)

7

ID3: Top-Down Induction of Decision Trees

Main loop:

1. A← the “best” decision attribute for next node

e.g.: “best” = “highest information gain”

2. Assign A as decision attribute for node

3. For each value of A, create new descendant of node

4. Sort training examples to leaf nodes

5. If training examples perfectly classified, Then STOP,

Else iterate over new leaf nodes

A1=? A2=?

ft ft

[29+,35-] [29+,35-]

[21+,5-] [8+,30-] [18+,33-] [11+,2-]

Which attribute is best?

8

Entropy

• S is a sample of training examples

• p⊕ is the proportion of positive examples in S

• p⊖ is the proportion of negative examples in S

• Entropy measures the impurity of S

Entropy(S) ≡ −p⊕ log2 p⊕ − p⊖ log2 p⊖

• Properties (for Boolean target):

1. Entropy is 0 if S is totally unbalanced

2. Entropy is 1 if S is totally balanced

E
nt

ro
py

(S
)

1.0

0.5

0.0 0.5 1.0
p
+

9

Entropy

Entropy(S) = expected number of bits needed to en-

code class (⊕ or ⊖) of randomly drawn member of S

(under the optimal, shortest-length code)

Why?

Information theory: optimal length code assigns

− log2 p bits to message having probability p.

So, expected number of bits to encode ⊕ or ⊖ of

random member of S:

p⊕(− log2 p⊕) + p⊖(− log2 p⊖)

Entropy(S) ≡ −p⊕ log2 p⊕ − p⊖ log2 p⊖

In general, for a multi-class target with c classes

1. Entropy(S) = −
∑c

i=1 pi log2 pi

2. 0 ≤ Entropy(S) ≤ log2 c

Entropy measures homogeneity of examples

10

Information Gain

• Expected entropy of S with respect to attribute A

EntropyA(S) =
∑

v∈V alues(A)

|Sv|

|S|
Entropy(Sv)

V alues(A) = set of all possible values of A

Sv = {s ∈ S|A(s) = v}, s = training instance

• Expected reduction in entropy of S given A

Gain(S, A) ≡ Entropy(S)− EntropyA(S)

• To decide which attribute should be tested first, sim-

ply find the one with the highest information gain

A1=? A2=?

ft ft

[29+,35-] [29+,35-]

[21+,5-] [8+,30-] [18+,33-] [11+,2-]

11

Decision Tree for PlayTennis?

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Which attribute is the best classifier?

High Normal

Humidity

[3+,4-] [6+,1-]

Wind

Weak Strong

[6+,2-] [3+,3-]

 = .940 - (7/14).985 - (7/14).592
 = .151

 = .940 - (8/14).811 - (6/14)1.0
 = .048

Gain (S, Humidity) Gain (S,)Wind

=0.940E =0.940E

=0.811E=0.592E=0.985E =1.00E

[9+,5-]S:[9+,5-]S:

12

Selecting the Next Attribute for PlayTennis’s DT

Choose Outlook as the top test, because

• Gain(S, Outlook) = 0.246

• Gain(S, Humidity) = 0.151

• Gain(S, Wind) = 0.048

• Gain(S, Temperature) = 0.029

Then repeat for each children of Outlook

Outlook

Sunny Overcast Rain

[9+,5−]

{D1,D2,D8,D9,D11} {D3,D7,D12,D13} {D4,D5,D6,D10,D14}

[2+,3−] [4+,0−] [3+,2−]

Yes

{D1, D2, ..., D14}

? ?

Which attribute should be tested here?

Ssunny = {D1,D2,D8,D9,D11}

Gain (Ssunny , Humidity)

sunnyGain (S , Temperature) = .970 − (2/5) 0.0 − (2/5) 1.0 − (1/5) 0.0 = .570

Gain (S sunny , Wind) = .970 − (2/5) 1.0 − (3/5) .918 = .019

= .970 − (3/5) 0.0 − (2/5) 0.0 = .970

13

Final Partition and Decision Tree for PlayTennis

14

Summary: Basic ID3 Algorithm

BuildTree(DataSet, Output)

1. If all output values in DataSet are the same, re-

turn a leaf node that says

”predict this unique output”

2. If all input values in DataSet are the same, return

a leaf node that says

”predict the majority output”

3. Else find attribute X with highest Info Gain

(Suppose X has nX distinct values)

• Create and return a non-leaf node with nX chil-

dren

• The i-th child should be built by calling

BuildTree(DSi, Output)

Where DSi set consists of all those records in

DataSet for which X = i-th distinct value of X

15

Hypothesis Space Search by ID3

Hypothesis space of ID3: H = set of all possible DT’s

ID3 is a search heuristic based on information gain

Simple-to-complex hill-climbing search through H

...

+ + +

A1

+ – + –

A2

A3
+

...

+ – + –

A2

A4
–

+ – + –

A2

+ – +

... ...

–

16

Hypothesis Space Search by ID3

• Hypothesis space is complete!

– Target function surely in there . . .

• Outputs a single hypothesis (which one?)

– Can’t query the teacher . . .

– Can’t consider alternative DT’s . . .

• Do not backtrack

– May get stuck to local optima . . .

• Statistically-based search choices

– Uses all training examples at each step

– Less sensitive to errors in individual examples

– Robust to noisy data . . .

• Approximate inductive bias: prefer shorter trees

17

Inductive Bias in ID3

• H = set of all consistent DT’s from training set

→ Unbiased?

• Not really . . .

1. Preference for short trees, and for those with high

information gain attributes near the root

2. Bias is a preference for some hypotheses, rather

than a restriction of hypothesis space H

3. Occam’s Razor Principle: Prefer the shortest hy-

pothesis that fits the data

• ID3 vs Candidate-Elimination

1. ID3: Complete space, and, incomplete search

→ Preference bias

2. C-E: Incomplete space, and, complete search

→ Restriction bias

18

Occam’s Razor

Why prefer short hypotheses?

Argument in favor:

• Fewer short hyps. than long hyps.

→ a short hyp that fits data unlikely to be coincidence

→ a long hyp that fits data might be coincidence

Argument opposed:

• There are many ways to define small sets of hyps

• e.g., all trees with a prime number of nodes that use

attributes beginning with “Z”

• What’s so special about small sets based on size of

hypothesis??

19

Learning Errors

Training Set Error

• Apply learned DT on training examples

• Training error = Percentage of misclassification

on training examples

• The smaller the better

Test Set Error

• Learning is not usually in order to predict the

training data’s output on data we have already

seen

• It is more commonly in order to predict the output

value for future data we have not yet seen

• Apply learned DT on test examples

• Test error = Percentage of misclassification on

test examples

• The smaller the better

20

Two Definitions of Error

The true error of hypothesis h with respect to tar-

get function f and distribution D is the probability

that h will misclassify an instance drawn at random

according to D.

errorD(h) ≡ Pr
x∈D

[f(x) 6= h(x)]

The sample error of h with respect to target function

f and data sample S is the proportion of examples h

misclassifies

errorS(h) ≡
1

|S|

∑

x∈S

δ(f(x), h(x))

Where δ(a), b) is 1 if a 6= b, and 0 otherwise.

How well does errorS(h) estimate errorD(h)?

X

h

f

21

Problems Estimating Error

1 Bias: If S is training set, errorS(h) is an optimistic

estimate

bias ≡ E[errorS(h)]− errorD(h)

For an unbiased estimate, h must be evaluated on

an independent sample S (which is not the case if S

is the training set!)

2 Variance: Even with unbiased S, errorS(h) may still

vary from errorD(h) and across samples!

Example: Hypothesis h misclassifies 12 of the 40 exam-

ples in S

errorS(h) =
12

40
= .30

• What is errorD(h)?

• How close is errorS(h) to errorD(h)?

• Given observed errorS(h) what can we conclude

about errorD(h)?

22

Confidence Intervals

There is an extensive literature on how to estimate a

classifier’s performance from samples and how to as-

sign confidence to estimates (see Chapter 5). For

instance

• If

1. S contains n examples, drawn independently of

h and each other

2. n ≥ 30

• Then

With approximately N% probability, errorD(h) lies

in interval

errorS(h)± zN

√

errorS(h)(1− errorS(h))

n

where

N%: 50% 68% 80% 90% 95% 98% 99%
zN : 0.67 1.00 1.28 1.64 1.96 2.33 2.58

23

Empirical Evaluation of a Classifier

Holdout Method (the usual approach):

1. Partition the set S into training set and test set

2. Use training set for learning, obtain an hypothesis

H and set Acc := 0

3. For each element t in test set

• Apply H on t

• If H(t) = label(t) then

Acc := Acc + 1

4. Accuracy := Acc
Size of test set

We may be unlucky — training and test data may not

be representative

Solution: Run multiple experiments with disjoint

training and test data sets in which each class

is represented in roughly the same proportion as

in the entire data set

24

Empirical Evaluation of a Classifier

k-Fold Cross-Validation (recommended when data are limited):

1. Partition the set S into k equal parts, where each

part has roughly the same class distribution as S

2. Err := 0

3. For i = 1 to k do

• Strain := S − Si and Stest := Si

• H := Learn(Strain)

• Err := Err + Error(H, Stest)

4. Error := Err
k

Better still: Repeat k-fold cross-validation r times and average the results

Leave-One-Out Cross-Validation :

• k-Fold cross-validation with k = n, where n is size of avail-
able data set

• Do n experiments — using n − 1 samples for training and
the remaining sample for testing

25

Measuring Classifier’s Performance

• Rigorous statistical evaluation is important

• How good is a learned hypothesis?

• Is one learning algorithm better than another?

• Different procedures for evaluation are appropriate

under different conditions — Important to know when to use

which evaluation method and be aware of pathological behavior

N: Total number of instances in the data set

TPj: True positives for class j

FPj : False positives for class j

TNj: True Negatives for class j

FNj: False Negatives for class j

N

TNTP
Accuracy

jj

j

jjjjjjjJ

jjjj

j
FNTNFPTNFPTPFNTP

FNFPTNTP
nCoeffCorrelatio

jJ

j
j

FPTP

TP
Precision

jJ

j
j

FNTP

TP
Recall

j
jJ

j
j Precision

FPTP

FP
FalseAlarm 1

N

TP

Accuracy
j

j

26

Measuring Classifier’s Performance

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

FNTNFPTNFPTPFNTP

FNFPTNTP

nCoeffCorrelatioAverageMicro

j

j

j

j

j

j

FPTP

TP

PrecisionAverageMicro

j

j

j

j

j

j

FNTP

TP

RecallAverageMicro

PrecisionAverageMicroFalseAlarmAverageMicro 1

Micro averaging gives

equal importance to each

instance classes with

large number of instances

dominate

j

jnCoeffCorrelatio
M

nCoeffCorrelatioAverageMacro
1

j

jPrecision
M

PrecisionAverageMacro
1

PrecisionAverageMacroFalseAlarmAverageMacro 1

j

jRecall
M

RecallAverageMacro
1

Macro averaging gives equal
importance to class

performance on classes with

few instances is weighted as

much as performance on

classes with many instances

Precision is sometimes called specificity

and Recall is sometimes called sensitivity

27

Measuring Classifier’s Performance

Confusion Matrix: A matrix showing the predicted and

actual classifications. A confusion matrix is of size

c × c where c is the number of different label values

(i.e. classes).

• Confusion matrix for c = 2:

Predicted
H+ H−

Actual
T+ TP FN

T− FP TN

• Confusion matrix for c = 3 (not really!)

155C
1

1070C
1

O
1O

1
Guess

True

2614C
2

2040C
2

O
2O

2
Guess

True

1119C
3

961C
3

O
3O

3
Guess

True

911

11

2026

26

1015

15

3

2

1

Pprecision

Pprecision

Pprecision

1911

11

1426

26

515

15

3

2

1

Pprecision

Pprecision

Rrecall

100

112615

19145112615

112615

92010112615

112615

Accuracy

R

P

micro

micro

28

Measuring Classifier’s Performance

Measures defined for a 2× 2 confusion matrix

• Accuracy =
TP+TN

TP+FN+FP+TN
= Efficiency

• Sensitivity =
TP

FN+TP
= True positive rate, Recall

• Specificity =
TN

TN+FP
= True negative rate

• Precision =
TP

FP+TP

• False positive rate =
FP

TN+FP

• False negative rate =
FN

FN+TP

• Coverage: The proportion of a data set for which a classifier makes a

prediction. If a classifier does not classify all the instances, it may be

important to know its performance on the set of cases for which it is

confident enough to make a prediction

Predicted
H+ H−

Actual
T+ TP FN

T− FP TN

29

Measuring Classifier’s Performance

• The confusion matrix contains all the information

needed to assess the performance of binary classifiers

• Measures like accuracy, sensitivity, specificity and

precision summarize this information in a single scalar.

Any such summary necessarily loses information

• Each measure is useful in its own way, but must be

used with care; for example, accuracy is misleading

when data set has uneven proportion of examples of

different classes

• If a single measure of performance is to be reported,
perhaps one of the least biased and the most useful
measure is the correlation coefficient; value of 1 cor-
responds to the perfect classifier , 0 correspond to
random predictions

• correlation coefficient can be defined for the case of classifiers
with c classes

• It is often possible to trade off different measures

30

Overfitting

• Consider error of hypothesis h over

1. Training data: errortrain(h)

2. Entire distribution D of data: errorD(h)

Hypothesis h ∈ H over fits training data if there is

an alternative hypothesis h′ ∈ H such that

errortrain(h) < errortrain(h
′) and errorD(h) > errorD(h

′)

• Causes of overfitting

1. Noisy samples

2. Irrelevant variables

3. Complex hypothesis (e.g./ VS, DT, NN, . . .)

4. As we move further away from the root, the data set used
to choose the best test becomes smaller → poor estimate
of entropy

• Example: Add the noisy training example #15:

Sunny, Hot, Normal, Strong, P layTennis = No

What effect on earlier tree?

31

Overfitting in Decision Tree Learning

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, P layTennis = No

What effect on earlier tree below?

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

Size of tree (number of nodes)

On training data
On test data

32

Avoiding Overfitting in DT learning

• How can we avoid overfitting?

1. Early stopping: Stop growing when data split not

statistically significant

That is: When further split fails to yield sta-

tistically significant information gain estimated

from validation set

2. Pruning: Grow full tree, then post-prune

Use roughly the same size sample at every node to

estimate the entropy — when there is a large data

set from which we can sample

• How to select “best” tree (that minimizes overfitting)?

1. Measure performance over training data

2. Measure performance over separate validation data
set

MDL: minimize size(tree) + size(misclassifications(tree))

33

Reduced-Error Pruning

Each node is a candidate for pruning
Pruning a DT node consists of

• Removing the sub-tree rooted at that node

• Making it a leaf

• Assigning it the most common label at that node

Reduced-Error Pruning

Split data into training and validation set and

Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning each

candidate node (plus those below it)

2. Greedily select a node which most improves the

performance on the validation set when the sub-

tree rooted at that node is pruned

Produces smallest version of most accurate subtree

Drawback: Holding back the validation set limits the amount of training data

available; not desirable when data set is small

34

Reduced-Error Pruning — Example

+10%B

-20%A

Accuracy gain
by Pruning

NodeA

B

- +

+

100

40
60

55 5

Before Pruning

A

+ -

After Pruning

A=a1 A=a2

A=a1 A=a2

Effect of Reduced-Error Pruning

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

Size of tree (number of nodes)

On training data
On test data

On test data (during pruning)

35

Rule Post-Pruning

1. Convert tree to equivalent set of rules

2. Prune each rule independently of others

3. Sort final rules in order of lowest to highest error

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

If (Outlook = Sunny) ∧ (Humidity = High)
Then PlayTennis = No

If (Outlook = Sunny) ∧ (Humidity = Normal)
Then PlayTennis = Y es

Advantage: can potentially correct bad choices made close to the
root

Post pruning based on validation set is the most commonly used
method in practice (e.g., C4.5)

Development of pre-pruning methods with comparable performance that do not

require a validation set is an open problem

36

Continuous Valued Attributes

Create a discrete attribute to test continuous

• Temperature = 82.5

• (Temperature > 72.3) = t, f?

Temperature T: 40 48 60 72 80 90
PlayTennis: No No Yes Yes Yes No

Candidate splits T > 48+50
2 ? or 60+70

2 ?

1 Sort instances by value of continuous attribute under

consideration, and obtain all candidate thresholds;

e.g. T>54 and T>85 are the candidate discrete at-

tributes

2 Compute the information gain for each of the candi-

date discrete attribute

3 Chose the best candidate discrete attribute and . . .

. . . use it as any normal discrete attribute for growing a DT

37

Attributes with Many Values

Problem:

• If attribute has many values, Gain will select it

• Imagine using Date = Jun 3 1996 as attribute

One solution: use GainRatio instead of Gain

• GainRatio shows the proportion of information

generated by the split that is useful for classifi-

cation

GainRatio(S, A) ≡
Gain(S, A)

SplitInformation(S, A)

• SplitInformation measures potential information

generated by dividing S into c classes

SplitInformation(S, A) ≡ −
c

∑

i=1

|Si|

|S|
log2

|Si|

|S|

where Si is subset of S for which A has value vi

38

Attributes with Costs

Not all attributes are equally costly or risky

• In medical diagnosis: BloodTest has cost $150

Goal: Learn a DT which minimizes cost of classification

Solutions:

1. Replace gain by

• Tan and Schlimmer (1990)

Gain2(S, A)

Cost(A)

• Nunez (1988)

2Gain(S,A) − 1

(Cost(A) + 1)w

Where w ∈ [0,1] determines importance of cost

2. Use a cost matrix: Not all misclassifications are
equally costly (e.g. a false alarm is less costly than
a failure in a nuclear power plant)

• Cost matrix is like confusion matrix, except cost of errors
are assigned to the elements outside the main diagonal
(misclassifications). Used for diagnosis problems

39

Unknown/Missing Attribute Values

• Sometimes, the fact that an attribute value is missing
might itself be informative

Missing blood sugar level might imply that the physician had reason not
to measure it

• Solution 1:

1. Introduce a new value (one per attribute) to de-

note a missing value

2. DT construction and its use for classification pro-

ceed as before

• Solution 2:

During DT construction: Replace a missing value in

a training example with the most frequent value

found among the instances at the node

During use of DT for classification: Replace a miss-

ing value in an instance to be classified with the

most frequent value found among the training in-

stances at the node

40

Unknown/Missing Attribute Values

• Solution 3:

During DT construction: Replace a missing value in a training
example with the most frequent value found among the
instances at the node that have the same class label as the
training example

During use of DT for classification:

1. Assign to a missing value the most frequent value found
at the node (based on the training sample)

2. Sort the instance through the DT to generate the class
label

• Solution 4:

During DT construction: Generate several fractionally weighted
training examples based on the distribution of values for the
corresponding attribute at the node

During use of DT for classification:

1. Generate multiple instances by assigning candidate val-
ues for the missing attribute based on the distribution of
instances at the node

2. Sort each instance through the DT to generate candi-
date labels and assign the most probable class label or
probabilistically assign class label

41

Unknown/Missing Attribute Values

n+=60, n-=40

1 0
A

(n+|A=0) = 10; (n-|A=0)= 40B+(n+|A=1)=50

1 0

- +(n-|A=0, B=1)=40 (n+|A=0, B=0) = 10

Suppose B is missing

Replacement with most frequent value at the node B=1

Replacement with most frequent value if class is + B=0

n+=60, n-=40

1 0
A

(n+|A=0) = 10; (n-|A=0)= 40B+(n+|A=1)=50

1 0

- +

(n-|A=0, B=1)=40
(n+|A=0, B=0) = 10

Fractional instance based on distribution at the node .. 4/5 for B=1, 1/5 for B=0

Fractional instance based on distribution at the node for class + ..

1/5 for B=0, 0 for B=1

Suppose B is missing

42

PETs — Probability Estimation Trees

Accuracy does not consider the probability of prediction,

so in PETs

• Instead of predicting a class, the leaves give a

probability

• Very useful when we do not want just the class,

but examples most likely to belong to a class

• No additional effort in learning PETs compared

to DTs

• Require different evaluation methods

• Bayesian DTs

43

