
1

Perl Intro for Bioinformatics

Eric Mulvaney
University of Windsor

2

Why Perl?

● Perl is a very, very concise language.
● Perl comes with extensive documentation.

– See the perl and perldoc manpages for more.
● The Perl compiler and runtime system can
provide an amazing amount of help to the user.
– In particular, see perldoc diagnostics.

● Perl is free, tried and true, and available for all
major operating systems.

● Bioperl (http://www.bioperl.org/)

3

Basic Datatypes

● Perl has three main datatypes:
– Scalars

● Scalars hold single values, like integers, floating-point or
real values, and strings.

– Arrays
● Arrays hold any number of scalars.

– Hashes
● Hashes associate keys with values. Both keys and values
are scalar.

4

Scalar Variables

● All scalar variables begin with dollar-signs.
my $name = "Tim";
my ($dx, $dy) = (10, 20);
my $dist = sqrt ($dx**2 + $dy**2);

● Perl needs to be told to check for declarations.
print $x + 2; # Assumes $x = 0, and prints 2
use strict;
print $x + 2; # Error, $x undeclared!

5

Dynamic Typing

● Scalars can be integers, floats, or strings.
my $id = 123_456_789;
print "ID = ", $id; # prints ID = 123456789
$id = "123 456 789";
print "ID = ", $id; # prints ID = 123 456 789

● Perl will automatically convert, but be careful.
$next_id = $id + 1;
print "ID = ", $next_id; # prints ID = 124

6

Strings

● Double quotes interpolate values.
my $name = "Tim";
print "Hello, $name!"; # prints Hello, Tim!
print 'Hello, $name!'; # prints Hello, $name!

● You concatenate strings with '.' not '+'.
print 'Hello, ' . $name . '!'; # prints Hello, Tim!
print '4' . '2'; # prints 42
print '4' + '2'; # prints 6
print 2 + 2 . 2 # prints 42

7

More Strings

● You can extract substrings from strings.
my $msg = "I am a fish!";
print substr($msg, 7, 4); # prints fish

● Or replace them with new substrings.
substr($msg, 7, 4) = "hologram";
print $msg; # prints I am a hologram!

● But you can't subscript strings like arrays.
print $word[0]; # Error: doesn't mean what you

think it means.

8

Other String Operators

● You can duplicate strings with 'x'.
print "Fish" x 3; # prints FishFishFish

● Like numbers, strings can also be compared.
Numbers < <= == != >= > <=>
Strings lt le eq ne ge gt cmp

● Remember, Perl does automatic conversions.
print '42' < '6' ? 'true' : 'false'; # prints false
print 42 lt 6 ? 'true' : 'false'; # prints true

9

Arrays

● Arrays are like strings of scalar values.
my @stuff = (3.14, 42, "hands of blue");
my ($pi, $ans, $scary) = @stuff;

● Indexing returns a scalar, hence the '$'.
print "Two by two, $stuff[2]!";

● You can also extract slices, replace slices, but you
cannot nest arrays within other arrays.
my @slice = @stuff[0..1]; # (3.14, 42)
@slice[1..1] = (2, 3); # (3.14, 2, 3)
my @more = (@slice, 5, 7); # (3.14, 2, 3, 5, 7)

10

Arrays and Strings

● Strings can be split, arrays can be joined.
my @girls = split(" ", "Zoe Inara Kaylee River");
print join(", ", @girls); # prints Zoe, Inara, Kaylee, ...
print join(", ", sort @girls); # prints Inara, Kaylee, ...

● Array length and string length are different.
print length($girls[1]); # prints 6
my $len = @girls;
print $len; # prints 4
print @girls; # prints InaraKayleeRiverZoe
print scalar @girls; # prints 4

11

Hashes

● Hashes are like Dictionaries in Java.
my %ages = ('Tim' => 42, 'River' => 17, 'Summer' => 21);
print $ages{'River'}; # prints 17

● Keys may not be kept in the order supplied.
print join(", ", keys %ages); # prints River, Tim, ...
print join(", ", values %ages); # prints 17, 42, 21

● Keys can be unquoted if they're barewords.
delete $ages{Tim};
print exists $ages{Tim} ? 'true' : 'false'; # prints false

12

Advanced Datatypes

● In Perl, arrays and hashes can only hold scalars,
but there is another kind of scalar: references.

● References are like pointers.
my @array = (1, 2, 3, 4);
my $aref = \@array;

● Dereferencing can get messy.
print @{$aref}; # prints 1234
print ${$aref}[0]; # prints 1
print $$aref[1]; # prints 2
print $aref->[2]; # prints 3

13

More References

● There are easier ways to create references.
my $href = { Numbers => [1, 2, 3, 4] };
print @{$href->{Numbers}}; prints 1234

Without the @{}, Perl will only print the pointer value.
print $href->{Numbers}->[0]; prints 1;
print $href->{Numbers}[1]; prints 2;

Only the first -> is mandatory; without it, Perl would
assume you were looking up 'Numbers' in %href.

● You can even make references to literals.
my $ten = \10;
$$ten = 12; # Error: read-only value.

14

Data Structures

● Refs enable us to create complex data structures.
my %people = (

River => { age => 17, siblings => ['Simon'] },
Summer => { age => 21, gender => 'female' }

);
print $people{River}{age}; # prints 17

Perl figures out that $people{River} is a reference.
print @{$people{River}{siblings}}; # prints Simon

Since we want the whole array, we have to use @{}

● A good tutorial on Perl references can be found in
the perlref manpage.

15

Conditionals

● Perl has the traditional if-statement, but it also
has 'unless'; note, the braces are not optional.
my $x = $value <=> 42;
if($x < 0) { print "Too small!"; }
elsif($x > 0) { print "Too large!"; }
else { print "Just right!"; }
unless(@work) { print "Done."; }

● You can even suffix them for single statements –
no braces, and the parentheses are optional.
die("Can't open $file!") unless open(IN, "< $file");

16

Loops

● It also has for-, while-, and also foreach-loops.
for(my $i = 0; $i < @items; ++$i) { print $items[$i]; }
foreach my $item (@items) { print $item; }
while(not $done) { ...do something... }
do { ...something... } until($done);

● Like if/unless, you can suffix each except for(;;).
print "I am a fish!" while 1; # Infinite loop.
print $_ foreach @items; # Can't name the iterator.

● Perl uses next/last like C/Java's continue/break.
foreach my $x (@a) { next if $x < 1; ... }

17

File I/O

● Arguments to 'open' resemble Unix sh redirects.
open IN, "< $file"; # IN is the file handle.
open OUT, ">> $log"; # Append to $log.
open DAT, "+< $db"; # Open for reading/writing.
open LS, "ls -l |"; # We read the output of 'ls -l'.

● Reading and writing from streams is easy.
my $line = <IN>;
print OUT "me: I just read $line\n"; # No comma.

● Lines read may contain line-ends.
chomp $line;

18

Regular Expressions

● You can use R.E. to check the format of strings.
print 'keyword' if $token =~ m/^(if|then|else)$/;

● But it is more interesting to extract data.
my @numbers = ($line =~ m/\d+/g);
while(my $line = <IN>) {

next if $line !~ m/([-.\w]+)@([-.\w]+)/;
print "email: $1\@$2\n";

}
my ($dir, $file) = $path =~ m{(.+/)?([^/]+)};

19

Substitutions

● You can also use R.E. for search-and-replace.
my $msg = "She's wearing green.";
$msg =~ s/green/gold/;
print $msg; # prints She's wearing gold.
my $code = "if test then hiccup else wink";
$msg =~ s/(if|then|else)/\U\1/g;
print $code; # prints IF test THEN hiccup ELSE wink

● There's also a similar utility for characters.
my $secret = "Don't tell anyone!";
$secret =~ tr/a-z/k-za-j/; # Simple encryption.
print $secret; # prints Dyx'd dovv kxiyxo!

20

Subroutines

● Arguments are not formal, Perl puts them in @_.
sub hypotenuse {

my ($a, $b) = @_;
return sqrt ($a**2 + $b**2);

}
sub sum {

my $acc;
$acc += $_ foreach @_;
return $acc;

}
print sum(1, 2, 3, 4); # prints 10

21

Reading FASTA files

open IN, "< $file" or die "Can't open $file: $!";
my $line = <IN>; # Read the descriptor (ignored).
my $seq;
while($line = <IN>) {

last if $line =~ /^>/; # Stop if descriptor.
$line = lc $line;
$line =~ s/[^a-z]//sg;
$seq = $seq . $line;

}
return $seq;

22

Translate DNA into RNA

sub dna_to_rna {
my ($dna) = @_;
$dna = lc $dna;
$dna =~ s/[^acgt]//sg;
my $rna = (reverse $dna) =~ tr/acgt/ugca/;
return $rna;

}

23

Translate RNA into Protein

my %codonMap; # ('gcu' => 'Ala', 'cgu' => 'Arg', ...)

sub rna_to_protein {
my ($rna) = @_;
my $protein;
while($rna =~ /(...)/g) {

$protein .= $codonMap{$1};
}
return $protein;

}

24

Initializing %codonMap

my %codonMap;

while(my $line = <DATA>) {
chomp $line;
my @codons = split $line;
my $residue = shift @codons;
foreach my $c (@codons) {

$codonMap{lc $c} = $residue;
}

}

25

Other Points of Interest

● Modules
– Build libraries of related subroutines which can be
included with the use statement.

– For an introduction see man perlmod.
● Object Oriented Programming

– Perl supports OOP after a fashion. Robust, simple,
and a bit off-putting at first, but you'll learn to like it.

– For an introduction see man perltoot; if you're
unfamiliar with OOP, start with man perlboot.

● Perl for Bioinformatics – BioPerl
– http://www.bioperl.org/

