
PAIR-WISE SEQUENCE ALIGNMENT

ALGORITHMS

Why compare sequences?

• Lots of sequences with unknown structure or func-

tion, but, few sequences with known structure or

function

1. If they align, they are similar, maybe due to

common descent

2. If they are similar, then they may have same

structure or function

3. If one of them has known structure or function,

then alignment to the other yields insight about

how structure or function works.

• Searching databases for related sequences

• Exploring evolutionary relationships among species

• Finding informative elements in sequences

• . . .

1

Evolution at the DNA Level

…ACGGTGCAGTTACCA…

MutationDeletion

SEQUENCE EDITS

…AC----CAGTCCACCA…

REARRANGEMENTS
Inversion

Translocation

Duplication

Evolutionary Rates

next generation

OK

OK

OK

X

X

Still OK?

Alignment is the key to

• finding important regions

• determining function

Sequence conservation implies functions

• uncovering the evolutionary forces

2

Distance and Similarity

All contemporary genetic material have one common

ancestral DNA

Differences between families of contemporary species

are due to local mutations during the course of evo-

lution

Local mutations

• Insertion of one or more bases

• Deletion of one or more bases

• Substitution of one or more bases

Insertion and deletion are reverse of each other. They

are called indel

Distance Given two sequences: the minimal sum of

weights for a set of mutations transforming one into

the other.

Similarity Given two sequences: the maximal sum of

weights corresponding to resemblance of the two se-

quences

3

Simplest Model: Edit Distance

Definition The minimal number of mutations (inser-

tions, deletions and substitutions) needed to trans-

form one sequence into the other.

Approximates the number of DNA replications that

occurred between two DNA sequences

Example Given a c c t g a and a g c t a, the minimal

number of mutations required to transform one into

the other is 2:

a c c t g a

a g c t g a

a g c t a

a c c t g a

a g c t - a

The alignment above shows the difference between

the sequences: substitution and deletion

Remark The definition of edit distance implies that all

operations are done on one sequence only and the

representation shown above might make false im-

pression that the order of the changes is known

4

Sequence Alignment

Definition Given two sequences S = S1S2 . . . Sm and
T = T1T2 . . . Tn, an alignment is an assignment of
gaps to positions in S or T , so as to line up each
letter in one sequence with either a letter or gap in
the other sequence

Scoring function: to evaluate the goodness of an align-
ment

Alignment algorithm: to find the best alignment repre-
senting the minimal distance or the maximum simi-
larity between S and T

Biological models consider the significance of each mu-
tation and score the alignment accordingly. The
alignment score can be used to estimate the bio-
logical difference of two sequences

Example The aligned sequences

SEQ 1 GTAGTACAGCT-CAGTTGGGATCACAGGCTTCT

SEQ 2 GTAGAACGGCTTCAGTTG---TCACAGCGTTC-

Distance 1 : match 0, substitution 1, indel 2 ⇒dis=14
Distance 2 : match 0, d(A,T)=d(G,C)=1, d(A,G)=1.5, indel 2, ⇒dis=14.5

Similarity : match 1, substitution 0, indel -1.5 ⇒sim=16.5

5

Dot Matrix Pair-Wise Sequence Comparison

General way to see similarities between two sequences

Used for

• finding repeats in sequences

• finding palindromes in sequences

• RNA structure predictions

• . . .

Visualizes the entire comparison at once

Dot Matrix Method

1. Sequences to be compared are written out along

the x and y axis of a matrix

2. Define a scoring function, for example

Identity scoring function: 1 (match) or 0 (no-

match)

3. Put a dot wherever symbols match according to

the scoring function

4. Diagonal lines indicates areas of similarities

6

Dot Matrix Pair-Wise Sequence Comparison

S E Q U E N C E A N A L Y S I S P R I M E R

S • • •

E • • • •

Q •

U •

E • • • •

N • •

C •

E • • • •

A • •

N • •

A • •

L •

Y •

S • • •

I • •

S • • •

P •

R • •

I • •

M •

E • • • •

R • •

Since this is a comparison between two of the same sequences, an

intra-sequence comparison, the most obvious feature is the main identity

diagonal. Two short perfect palindromes can also be seen as crosses directly off

the main diagonal; they are ANA and SIS

S E Q U E N C E A N A L Y S I S P R I M E R

A ¥ ¥

N ¥ ¥ ¥

A ¥ ¥

L ¥

Y ¥ ¥

Z

E ¥ ¥ ¥

S ¥ ¥ ¥ ¥

E ¥ ¥ ¥

Q ¥

U ¥

E ¥ ¥ ¥

N ¥ ¥

C ¥ ¥

E ¥ ¥ ¥ ¥

S ¥ ¥ ¥

Here you can easily see the effect of a sequence insertion or deletion. It is

impossible to tell whether the evolutionary event that caused the discrepancy

between the two sequences was an insertion or a deletion and hence this

phenomena is called an indel. A jump or shift in the register of the main

diagonal on a dot plot clearly points out the existence of an indel
7

Scoring Function

To score an alignment we need to define the score of
a given column of the alignment. There can be tree
possibilities for a column

1. Match: Letters are the same

2. Mismatch: Letters are different

3. Gap: there is an indel

We need a score for each possibility:

• Similarity score function

1. Match: σ(a, a) = m

2. Mismatch: σ(a, b) = s, a 6= b

3. Gap: σ(a,−) = σ(−, a) = g

Similarity score of an alignment A of sequences S and T :

σ(A) =
i=l∑

i=1

σ(S[i], T [i])

that is

σ(A) = (#matches) ·m + (#mismatches) · s + (#gaps) · g

Best alignments have highest scores

• Distance score function: defined such that best

alignments have lowest scores

8

Finding the Best Alignment Exhaustively

Generate all possible alignments

• Generate sequences with gaps in every position

• . . . and of every possible length

• . . . and pick one best alignment

This is too slow

Complexity is exponential: O(2m+n)

Better method is Dynamic Programming: O(mn)

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA
A
G
T
G
A
C
C
T
G
G
G
A
A
G
A
C
C
C
T
G
A
C
C
C
T
G
G
G
T
C
A
C
A
A
A
A
C
T
C

Too many possible
alignments:

O(2M+N)

9

Dynamic Programming Method

Alignment is additive: score of alignment is sum of the
scores of sub-alignments

• An optimal alignment is composed of optimal sub-
alignments

• Score of the best alignment that ends at positions
(i, j) in two sequences = score of the best align-
ment previous to those two positions + score of
aligning those two positions

Score of Best Previous Alignment

New Best Alignment = Previous Best + Local Best

i

j

Dynamic Programming Solve a ”large and hard” prob-
lem using solutions of its ”easier and smaller subprob-
lems”. Given S and T , build up an optimal alignment
by determining optimal alignments between prefixes
of the two sequences. We start with the shorter pre-
fixes and use previously computed results to solve the
problem for larger prefixes

Prefix of S: S1...j for 0 ≤ j ≤ |S|
(S1...0 is the empty prefix)

10

Global Pairwise Alignment

Given two sequences S and T , find an optimal global
alignment [S : T]. The term global emphasizes the
entirety of both sequences

Given S and T , with |S| = m and |T | = n

(i.e. S = S1...m and T = T1...n).

Let σ be the scoring function

Let V (i, j) be best score of [S1...i : T1...j]

Problem: compute V (m, n) and associated [S1...m : T1...n]

Three possible cases given best [S1...i : T1...j]

1. (Si,−): Si aligns to a gap.

V (i, j) = V (i− 1, j) + σ(Si,−)

2. (Si, Tj): Si aligns to Tj.

V (i, j) = V (i− 1, j − 1) + σ(Si, Tj)

3. (−, Tj): Tj aligns to a gap.

V (i, j) = V (i, j − 1) + σ(−, Tj)

11

Global Alignment by Dynamic Programming

How do we know which case is correct?

An optimal alignment [S1...m : T1...n] is composed of

optimal sub-alignments

Inductive assumption:

Scores V (i−1, j), V (i−1, j−1), V (i, j−1) are optimal

Then

V (i, j) = max

V (i− 1, j) + σ(Si,−)

V (i− 1, j − 1) + σ(Si, Tj)

V (i, j − 1) + σ(−, Tj)

Base cases: Given i, j > 0 we have

V (0,0) = 0

V (i,0) = V (i− 1,0) + σ(Si,−) =
∑k=i

k=0 σ(Sk,−)

V (0, j) = V (0, j − 1) + σ(−, Tj) =
∑k=j

k=0 σ(−, Tk)

The basis for V (i,0) says that if i characters of S

are to be aligned with 0 characters of T , then they

must all be aligned with gaps. The basis for V (0, j)

is analogous

12

The Needleman-Wunsch Algorithm

Algorithm: Needleman-Wunsch

Input: σ, S and T

Output: Maximum similarity between S and T

V (0,0) = 0

V (i,0) =
∑k=i

k=0 σ(Sk,−)

V (0, j) =
∑k=j

k=0 σ(−, Tk)

For i = 1 to m do

For j = 1 to n do

V [i, j] ← max

V [i− 1, j] + σ[Si,−] case 1

V [i− 1, j − 1] + σ[Si, Tj] case 2

V [i, j − 1] + σ[−, Tj] case 3

Ptr[i, j] ← max

L if case 1

D if case 2

U if case 3

Return V [m, n]

Use two matrices of size (m + 1)× (n + 1)

• Similarity matrix V to store the maximum score of each
sub-alignments [S1...i : T1...j]

• Pointer matrix to trace back an optimal alignment. It stores
the path to take: L = Left, D= Diagonal, U = Up

Time and space complexity = O(mn)
13

Recovering the Optimal Alignments

Recursive Algorithm: Align
Input: indices i, j, σ and matrix V of Algorithm Similarity
Output: optimal alignment between S and T in align-S, align-T, length l
If i = 0 and j = 0 then

l ← 0
Else

if i > 0 and V [i, j] = V [i− 1, j] + σ(Si,−) then
Align(i− 1, j, l)
l ← l + 1
align-S[l] ← S[i]
align-T[l] ← −

Else
if i > 0 and j > 0 and V [i, j] = V [i− 1, j − 1] + σ(Si, Tj) then

Align(i− 1, j − 1, l)
l ← l + 1
align-S[l] ← S[i]
align-T[l] ← −T [j]

Else // has to be j > 0 and V [i, j] = V [i, j − 1] + σ(−, Tj)
Align(i, j − 1, l)
l ← l + 1
align-S[l] ← −
align-T[l] ← T [j]

Method 1: Use the algorithm above if pointer matrix

was not defined. Retrace Needleman-Wunsch algorithm

from V [m, n] back to V [0,0], writing down the col-

umn associated with each V (i, j).

Method 2: Create an optimal alignment in reverse order

from V (m, n). Use pointer matrix Ptr to obtain the

column of the alignment.

Time complexity is O(m + n)

Space complexity is O(mn)

14

Example for Needleman-Wunsch Algorithm

x1 ……………………………… xM

y
1

…
…

…
…

…
…

…
…

…
…

…
…

y

N

Every nondecreasing

path

from (0,0) to (M, N)

corresponds to

an alignment

of the two sequences

An optimal alignment is composed

of optimal subalignments

15

End-Space Free Alignment

Given two sequences S and T , find an optimal align-
ment [S : T] between substrings of S and T when at
least one of these substrings is a prefix of the orig-
inal sequence and one (not necessarily the other) is
a suffix

Why end-space free alignment?

• Searching for region of a long sequence that is
similar to short sequence

• Searching for sequence that overlaps a given se-
quence

End spaces are those spaces that appear before first or
after the last character in a sequence.

Example Consider the two alignments below

SEQ 1 CAGCA-CTTGGATTCTCGG

SEQ 2 ---CAGCGTGG--------

SEQ 1 CAGCACTTGGATTCTCGG

SEQ 2 CAGC-----G-T----GG

with (global) scores of −19 and −12, respectively.
The second is an optimal global alignment, however
it is not so interesting. If we ignore end spaces, the
first is pretty good, with score of 3

16

Types of Alignments with End-Spaces

In many situations it is ok to have end-spaces at the
start or end of an alignment

Then we should not penalize gaps in the ends

----------CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC

GCGAGTTCATCTATCAC--GACCGC--GGTCG--------------

Alignments are scored ignoring some of the end-spaces

17

End-Space Free Alignment Algorithm

Variant of Needleman-Wunsch algorithm

Base cases: V (0,0) = V (i,0) = V (0, j) = 0

This allows zero weight to leading indels in (at most) one of the sequences

Recurrence relation for i, j > 0

V (i, j) = max

V (i− 1, j) + σ(Si,−)

V (i− 1, j − 1) + σ(Si, Tj)

V (i, j − 1) + σ(−, Tj)

This is exactly the same recurrence relation as in global alignment algorithm

Optimal score is Vopt = max

{
max1<i<m V (i, n)
max1<j<n V (m, j)

We search for the largest value in last column and

last row. Thus allowing (at most) one sequence

to end before the other, with zero weight for all

indels from there on

We reconstruct the optimal end-space alignment by re-

tracing from Vopt to first row or first column

18

Local Pairwise Alignment

Given two sequences S and T , find sub-strings S′ and
T ′ whose global similarity is maximum

Why local alignment? In many applications, two se-
quences may not be highly similar as a whole, but
may contain sections with high resemblance.

• Searching for exons or genes

• Searching for protein domains

• Comparing two genomes or genes

Example Consider the two sequences

S = g g t c t g a g

T = a a a c g a

If match = 2 and indel/substitution = -1, then the
best local alignment is

c t g a (∈ S)

c - g a (∈ T)

Exhaustive search: generate all pairs (S′, T ′) of sub-
strings and return one with maximum global similar-
ity. Too slow. Better: use Smith-Waterman algo-
rithm

19

Smith-Waterman Algorithm

Variant of Needleman-Wunsch algorithm

1. Scoring system uses negative scores for mismatches

Ignore badly aligning regions

2. Minimum score for V (i, j) is 0

Should not penalize sub-alignments for their global effects

3. Best score is sought anywhere in matrix V

Alignments can occur anywhere

Base cases: V (i,0) = V (0, j) = 0

Recurrence relation for i, j > 0

V (i, j) = max

0

V (i− 1, j) + σ(Si,−)

V (i− 1, j − 1) + σ(Si, Tj)

V (i, j − 1) + σ(−, Tj)

Optimal score is Vopt = max1≤i≤m,1≤j≤n V (i, j) and we

trace-back to obtain the associated local alignment

20

Example for Smith-Waterman Algorithm

21

Gap Penalties

A gap is any block of spaces in a single sequence of
a given alignment. The length of the gap is the
number of indels in it

SEQ 1 attc--ga-tggacc

SEQ 2 a--cgtgatt---cc

This alignment has four gaps and eight indels

Consider the identity scoring function and

SEQ 1 aatgc aatg-c

SEQ 2 ag-gc -a-ggc

Which is ”better” or ”biologically sound”?

Why better gap penalties?

1. Block insertions or deletions often occurs as a single muta-
tional event and are as likely as single insertions or deletions

2. Two proteins sequences might be relatively similar over sev-
eral intervals but differ in intervals where one contains a
protein subunit that the other does not.

3. Complementary DNA (cDNA) matching to find exons

Need to score a gap . . .

• more accurately since the penalty introduced by the gap
increases with the length of the gap

• as a whole when trying to align two sequences as to avoid
assigning high cost to long gaps

22

Gap Penalty Functions

1. Linear gap penalty function:

γ(n) = n · g, where g = σ(a,−) = σ(−, a)

(n)

Penalty increases too fast for large gaps

2. Convex gap penalty function:

γ(n + 1)− γ(n) ≤ γ(n)− γ(n− 1)

(n)

Penalty increases too slow for large gaps

3. Affine gap penalty function:

γ(n) = g + (n− 1) · e

g = σ(a,−) = σ(−, a) is the cost of opening the gap

e is the cost of extending the gap

(n)

e

d

Compromise between linear and convex gap function

23

Alignment Algorithm with Convex Gap Function

Given two sequences S and T and a convex gap penalty

function, find an optimal alignment [S : T]

Base cases: depends on type of alignment (global or

local or end-space)

Recurrence relation

V (i, j) = max

[0 if local alignment]

max0≤k≤i−1 V (k, j) + γ(i− k)

V (i− 1, j − 1) + σ(Si, Tj)

max0≤k≤j−1 V (i, k) + γ(j − k)

Optimal score and alignment: depends on type of align-

ment (global or local or end-space)

Time complexity is O(n2m) (assume n > m)

24

Alignment Algorithm with Affine Gap Function

V (i, j): Best score of alignment [S1...i : T1...j]

F (i, j): Best score of [S1...i : T1...j] if Si aligns to Tj

F (i, j) = V (i− 1, j − 1) + σ(Si, Tj)

G(i, j): Best score of [S1...i : T1...j] if Si aligns to a gap after Tj

1. If Si−1 aligns to Tj

S1 Si−1 Si

T1 Tj −

G(i, j) = V (i− 1, j) + g

2. If Si−1 aligns to a gap

S1 Si−1 Si

T1 Tj − −

G(i, j) = G(i− 1, j) + e

H(i, j): Best score of [S1...i : T1...j] if Tj aligns to a gap after Si

1. If Tj−1 aligns to Si

S1 Si −
T1 Tj−1 Tj

H(i, j) = V (i, j − 1) + g

2. If Tj−1 aligns to a gap

S1 Si − −
T1 Tj−1 Tj

H(i, j) = H(i, j − 1) + e

25

Needleman-Wunsch with Affine Gap Function

Given two sequences S and T and an affine gap penalty

function, find an optimal alignment [S : T]

Base cases:

V (0,0) = 0

V (i,0) = g + (i− 1)e

V (0, j) = g + (j − 1)e

Recurrence relations

V (i, j) = max

G(i, j) = max

V (i− 1, j) + g

G(i− 1, j) + e

F (i, j) = V (i− 1, j − 1) + σ(Si, Tj)

H(i, j) = max

V (i, j − 1) + g

H(i, j − 1) + e

Return V (m, n) and trace-back an optimal alignment

from V (m, n)

26

Substitution Matrices

Due to physico-chemical properties, certain pairs of

residues tend to substitute each other more frequently

than other pairs

How often one residue is substituted for another in re-

lated sequence?

1. Manually align a set of related sequences at given

sites

2. Obtain frequency s(a, b) of each type of substitu-

tion (a, b)

3. Matrix entry is σ(a, b) =
lg s(a,b)

p(a)p(b)
λ

p(x) = probability of residue x

λ is a range parameter

In general σ(a, b) = lg Observed frequency of (a, b)
Expected frequency of (a, b)

+ score ← More likely than random substitution

0 score ← Random substitution

− score ← Less likely than random substitution

We can then use the substitution matrix σ and a gap

penalty function γ to score alignments

27

Types of Substitution Matrices

1. Matrices based on observed rates of substitutions in

sequences aligned using structural criteria

PAM or BLOSUM matrices

2. Matrices based on analysis of residues properties and

similarities to predict substitutability

3. Matrices based on analysis of environments in which

substitution occurs

WAC matrix

4. Position-specific scoring matrices and profiles

Changing matrix changes alignments

• Context-specific matching

• Finding homologous sequences

• Modeling evolution with different matrices

Alphabet need not be the same and matrix need not be

symmetric

28

Examples of Substitution Matrices

A Sample Match Matrix for
the amino acids (PAM-250).

Can align amino acid sequences
to environmental sequences...

 E1 E2 E3 E4 E5 ...

A -0.77 Ð1.05 -0.54 -0.65 -1.52

R -1.80 -1.52 -2.35 -0.11 -0.41

N -1.76 -2.18 -2.61 -0.48 -0.26

D -2.48 -1.80 -2.63 -0.80 -2.08

C -0.43 -0.45 -0.59 0.15 -0.72

Q -1.38 -2.03 -0.84 0.16 -0.79

29

Applications of Alignment Algorithms

Given a newly discovered gene

• Does it occurs in other species?

• Other information about the gene?

Our

new

gene

104
The entire genomic database

1010 - 1012

Given a newly sequenced organism

• Which subregions align with other organism?

1. Potential genes

2. Other biological characteristics

Our newly

sequenced

mammal

3 109
The entire genomic database

1010 - 1012

30

Sequence Database Search

Needleman-Wunsch, Smith-Waterman and others align-

ment algorithms are too slow (O(mn)) for searching

large databases of size 1010–1012

Even linear time is slow for database of size 1010

Solutions:

1. Hardware implementation of dynamic program-

ming

2. Parallel or distributed hardware/software

3. Better: Design efficient search heuristics

• They give only approximate solutions

• Solutions are not guaranteed to be optimal

• Usually much faster than normal algorithms

• They are based on

(a) Preprocessing of the database

(b) Finding un-gapped small matching sequences

(c) Extending from smaller to larger matches

31

FASTA Heuristic

1. Make an hash table containing short words of the

query sequence and of the sequences from a database

2. For each word of the query, find similar words in

database by table look-up (hashing)

3. Score each match

4. Extend the good matches empirically

Word 0

Word 1

Word 2

Word 3

É

Word N

Seq0 Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 É SeqN-1 SeqN QUERY

32

BLAST (Basic Local Alignment Search Tool) Heuristic

Definitions:

• Segment pair (SP): pair of equal length segments

of sequences S1 and S2 aligned without gaps

• Locally maximal segment pair (LMS): a SP of

S1 and S2 whose score cannot be improved by

shortening or extending the SP

• Maximal segment pair (MSP): a SP of S1 and S2

with the highest local alignment score

• High scoring pair (HSP): a MSP of S1 and S2

whose score > σ

BLAST heuristic:

1. Break query sequence into w-words, w = 3

2. For each w-word W of query, find all SP’s with

score ≥ τ

3. Extend each high SP to a LMS

• Extend one letter to right and left and . . .

• Repeat from ?? until we reach maximal length possible (LMS)

4. Return all HSP’s, that is MSP’s with score > σ

33

Similarity and Homology

Sequence similarity can be measured in many ways

Percentage of identical residues in alignment

Percentage of conservation in alignment

. . .

Homologous sequences refer to sequences that have

common ancestor (related by evolution)

Types of homology
Orthologs are genes that have the same function
in various species, and that have arisen by
speciation.

Paralogs are other members of multigene families

A

CB CÕ

Species

Duplication

A is the parent gene

Speciation leads to B and C
Duplication leads to CÕ

B and C are ORTHOLOGS

C and CÕ are PARALOGS

Similarity may be evidence of homology but does not

necessarily implies homology

34

