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Microarray Microarray datadata
analysis: clustering andanalysis: clustering and
classification methodsclassification methods

Russ B. AltmanRuss B. Altman
BMI 214BMI 214
CS 274CS 274
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Measuring the expression ofMeasuring the expression of
genes in cellsgenes in cells

Fundamental dogma of biology:Fundamental dogma of biology:

DNA       mRNA        Protein DNA       mRNA        Protein             FunctionFunction

Sequencing technologies gives us DNA sequence.Sequencing technologies gives us DNA sequence.

How can we get a sense for which genes are turnedHow can we get a sense for which genes are turned
on/off in a cell?on/off in a cell?

Measure expression levels in a population of cellsMeasure expression levels in a population of cells
(that are thought to be responding in similar(that are thought to be responding in similar
manner).manner).
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Microarrays: DNA BaseMicroarrays: DNA Base
PairingPairing
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SpottedSpotted microarrays microarrays: protocol: protocol

Known DNA sequencesKnown DNA sequences

GlassGlass
slideslide

Cells of InterestCells of Interest

Isolate &  label
mRNA

Reference sampleReference sample
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TypicalTypical
DNADNA
arrayarray

forfor
YeastYeast
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Affymetrix Affymetrix chip technologychip technology

Instead of putting down intact genes on the chip,Instead of putting down intact genes on the chip,
these chips put down N-these chips put down N-mers mers of a certain lengthof a certain length
(around 20) systematically onto a chip by(around 20) systematically onto a chip by
synthesizing the N-synthesizing the N-mers mers on the spots.on the spots.

Labelled Labelled mRNA is then added to the chip and amRNA is then added to the chip and a
*pattern* of binding (based on which 20-mers*pattern* of binding (based on which 20-mers
are in the mRNA sequence) is seen.are in the mRNA sequence) is seen.

Bioinformatics is used to deduce the mRNABioinformatics is used to deduce the mRNA
sequences that are presentsequences that are present
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Affymetrix Affymetrix fabricationfabrication
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Affymetrix Affymetrix chipchip
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Agilent Agilent Technology:  InkjetTechnology:  Inkjet
technology used to put down DNAtechnology used to put down DNA
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Compare spotted &Compare spotted & Affy Affy//Agilent Agilent chipschips

?

?

REMEMBER:  Also control/reference DNA competing (in green)
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Reproducibility of data setsReproducibility of data sets

•• mRNA preparation &mRNA preparation & labelling labelling
•• Hybridization conditionsHybridization conditions
•• Inhomogeneities Inhomogeneities on slideon slide
•• Non-specific hybridizationNon-specific hybridization
•• Image analysisImage analysis
•• Background levelsBackground levels
•• Spot shapeSpot shape
•• Spot quantificationSpot quantification

•• Biological variationBiological variation……

Copyright Russ B. AltmanCopyright Russ B. Altman

What are expression arrays good for?What are expression arrays good for?
•• Follow population of (synchronized) cells over time, toFollow population of (synchronized) cells over time, to

see how expression changes (vs. baseline).see how expression changes (vs. baseline).
EXAMPLES:  yeast cells after exposure to heat, cancerEXAMPLES:  yeast cells after exposure to heat, cancer
cells over time.cells over time.

•• Analyze different populations of cells to see howAnalyze different populations of cells to see how
expression differs.  expression differs.  EXAMPLE:  Different types of lungEXAMPLE:  Different types of lung
cancer cellscancer cells

•• NOTE:  there are also non-expression uses of arrays,NOTE:  there are also non-expression uses of arrays,
such as assessing presence/absence of sequences in thesuch as assessing presence/absence of sequences in the
genome (e.g. polymorphisms in sequence)genome (e.g. polymorphisms in sequence)
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Matrix of ExpressionMatrix of Expression
Gene 1

Gene 2

Gene N

Experiment/Conditions 1

E1
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Matrix of ExpressionMatrix of Expression
Gene 1

Gene 2

Gene N

Experiment/Conditions 2

E1 E2
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Matrix of ExpressionMatrix of Expression
Gene 1

Gene 2

Gene N

Experiment/Conditions 3

E1 E2 E3
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Reorder Rows for ClusteringReorder Rows for Clustering

Gene 1

Gene 2

Gene N

E1 E2 E3

Gene 1

Gene 2

Gene N

E1 E2 E3



9

Copyright Russ B. AltmanCopyright Russ B. Altman

Why do we care aboutWhy do we care about
clustering expression data?clustering expression data?

If two genes are expressed in the same way, theyIf two genes are expressed in the same way, they
may be functionally related.may be functionally related.

If a gene has unknown function, but clusters withIf a gene has unknown function, but clusters with
genes of known function, this is a way to assign itsgenes of known function, this is a way to assign its
general function.general function.

We may be able to look at high resolutionWe may be able to look at high resolution
measurements of expression and figure out whichmeasurements of expression and figure out which
genes control which other genes.genes control which other genes.

E.g. peak in cluster 1 always precedes peak inE.g. peak in cluster 1 always precedes peak in
cluster 2 => ?cluster 1 turns cluster 2 on?cluster 2 => ?cluster 1 turns cluster 2 on?

Copyright Russ B. AltmanCopyright Russ B. Altman
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Average of clustered waveAverage of clustered wave
formsforms
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TypicalTypical
““wavewave
formsforms””

observedobserved
(note:  not(note:  not

lots oflots of
bumps)bumps)
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Cluster Analysis ResultCluster Analysis Result
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Methods for ClusteringMethods for Clustering

•• K-meansK-means

•• Hierarchical ClusteringHierarchical Clustering

•• Self Organizing MapsSelf Organizing Maps

•• Trillions of others.Trillions of others.
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Need a distance Need a distance metrix metrix for two n-for two n-
dimensional vectors (e.g., for ndimensional vectors (e.g., for n

expression measurements)expression measurements)
1.  Euclidean Distance1.  Euclidean Distance

D(X, Y) = D(X, Y) = sqrt sqrt [(x[(x11-y-y11))22 + (x + (x22-y-y22))22  ……(x(xnn-y-ynn))22 ] ]

(Also can normalize by variance of each =(Also can normalize by variance of each = Mahalonobis  Mahalonobis Distance)Distance)

2.  Correlation coefficient2.  Correlation coefficient

R(X,Y) = R(X,Y) = covcov((xyxy)/sd(x)sd(y))/sd(x)sd(y)
 = 1/n * SUM [ (x = 1/n * SUM [ (xii-x-xoo)/)/σσxx  *  (y*  (yii--yyoo)/)/σσyy  ]]

Where = Where = σσx x = = sqrt sqrt (E(x(E(x22) - E(x)) - E(x)22))
  and E(x) = expected value of x = average of x  and E(x) = expected value of x = average of x

Other choices for distance tooOther choices for distance too……
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Other distance metricsOther distance metrics……

3.  Manhattan Distance3.  Manhattan Distance

D(X, Y) = Sum[| xD(X, Y) = Sum[| xii-y-yii|] over all i|] over all i

2.  2.  Chebychev Chebychev distancedistance

D(X, Y) = Max| xD(X, Y) = Max| xii-y-yii| over all i| over all i

3.3. Angle between vectorsAngle between vectors

D(X, Y) = x . y/(||x|| ||y||), ||x|| = length of x ,  . = dot prodD(X, Y) = x . y/(||x|| ||y||), ||x|| = length of x ,  . = dot prod
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Measuring quality of clustersMeasuring quality of clusters

•• Compare INTRA-cluster distances withCompare INTRA-cluster distances with
INTER-cluster distances.INTER-cluster distances.

Good clusters should have big difference.Good clusters should have big difference.

•• Compare computed clusters with knownCompare computed clusters with known
clusters (if there are any) to see how theyclusters (if there are any) to see how they
match.match.

Good clusters will contain all known and noGood clusters will contain all known and no
wrong cluster members.wrong cluster members.

Copyright Russ B. AltmanCopyright Russ B. Altman

INTRA-cluster distance vs. INTER-cluster distance
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INTRA-cluster distance vs. INTER-cluster distance
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K-meansK-means
(Computationally attractive)(Computationally attractive)

1.  Generate random points  (1.  Generate random points  (““clustercluster
centerscenters””) in n dimensions) in n dimensions

2.  Compute distance of each data point to2.  Compute distance of each data point to
each of the cluster centers.each of the cluster centers.

3.  Assign each data point to the closest cluster3.  Assign each data point to the closest cluster
center.center.

4.  Compute new cluster center position as4.  Compute new cluster center position as
average of points assigned.average of points assigned.

5.  Loop to (2), stop when cluster centers do5.  Loop to (2), stop when cluster centers do
not move very much.not move very much.
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Graphical RepresentationGraphical Representation

A

B

Two features f1 (x-coordinate) and f2 (y-coordinate)
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K-means issuesK-means issues
•• Fast, O(N)Fast, O(N)

•• Hard to know what K to chooseHard to know what K to choose
–– Try a bunch, and measure qualityTry a bunch, and measure quality

•• Hard to know where to seed the clustersHard to know where to seed the clusters

•• Results can change drastically with differentResults can change drastically with different
seeds.seeds.
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INTRA-cluster distance vs. INTER-cluster distance

K=2K=2

Copyright Russ B. AltmanCopyright Russ B. Altman

INTRA-cluster distance vs. INTER-cluster distance

K=3K=3
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Hierarchical ClusteringHierarchical Clustering
(bottom up)(bottom up)

Used in Used in Eisen Eisen et alet al

(Nodes = genes or groups of genes.  Initially all nodes are(Nodes = genes or groups of genes.  Initially all nodes are
rows of data matrix)rows of data matrix)

1.1. Compute matrix of all distances (they usedCompute matrix of all distances (they used
correlation coefficient)correlation coefficient)

2.2. Find two closest nodes.Find two closest nodes.
3.3. Merge them by averaging measurements (weighted)Merge them by averaging measurements (weighted)
4.4. Compute distances from merged node to all othersCompute distances from merged node to all others
5.5. Repeat until all nodes merged into a single nodeRepeat until all nodes merged into a single node

Copyright Russ B. AltmanCopyright Russ B. Altman

Hierarchical ClusteringHierarchical Clustering E1 E2 E3
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How many clusters?How many clusters? E1 E2 E37

4
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Hierarchical ClusteringHierarchical Clustering
•• Easy to understand  & implementEasy to understand  & implement
•• Can decide how big to make clusters byCan decide how big to make clusters by

choosing the choosing the ““cutcut”” level of the hierarchy level of the hierarchy
•• Can be sensitive to bad dataCan be sensitive to bad data
•• Can have problems interpreting the treeCan have problems interpreting the tree
•• Can have local minimaCan have local minima

Most commonly used method for Most commonly used method for microarraymicroarray
data.data.

(Also (Also ““top-downtop-down”” which requires splitting which requires splitting
large group successively)large group successively)
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Can buildCan build
trees fromtrees from

clustercluster
analysis,analysis,
groupsgroups

genes bygenes by
commoncommon

patterns ofpatterns of
expression.expression.
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Self Organizing MapsSelf Organizing Maps
Used by Used by Tamayo Tamayo et alet al
(use same idea of nodes)(use same idea of nodes)

1.  Generate a simple (usually) 2D grid of nodes1.  Generate a simple (usually) 2D grid of nodes
(x,y)(x,y)

2.  Map the nodes into n-dim expression vectors2.  Map the nodes into n-dim expression vectors
(initially randomly)(initially randomly)

(e.g. (x,y) -> [0 0 0 x 0 0 0 y 0 0 0 0 0])(e.g. (x,y) -> [0 0 0 x 0 0 0 y 0 0 0 0 0])

3.  For each data point, P, change all 3.  For each data point, P, change all nodenode
positionspositions so that  they move towards P.  Closer so that  they move towards P.  Closer
nodes move more than far nodes.nodes move more than far nodes.

4.  Iterate for a maximum number of iterations,4.  Iterate for a maximum number of iterations,
and then assess position of all nodes.and then assess position of all nodes.
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SOM equations for updatingSOM equations for updating
node positionsnode positions

ffi+1i+1(N)= (N)= ffii(N) + (N) + ττ  ((d(N, Nd(N, NPP), i), i))  * [P-   * [P- ffii(N)](N)]

ffii(N) = position of node N at iteration i(N) = position of node N at iteration i
P = position of current data pointP = position of current data point
P- P- ffii(N) = vector from N to P(N) = vector from N to P
ττ = weighting factor or  = weighting factor or ““learning ratelearning rate”” dictates how dictates how

much to move N towards P.much to move N towards P.

ττ  ((d(N, Nd(N, NPP), i), i) ) = 0.02 T/(T+100 i) for  d(N,Np) < cutoff= 0.02 T/(T+100 i) for  d(N,Np) < cutoff
radius, else = 0radius, else = 0

T  = maximum number of iterationsT  = maximum number of iterations
Decreases with iteration and distance of N to PDecreases with iteration and distance of N to P
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Graphical RepresentationGraphical Representation

A

B

Two features f1 (x-coordinate) and f2 (y-coordinate)
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SOMsSOMs

•• Impose a partial structure on the clusterImpose a partial structure on the cluster
problem as a startproblem as a start

•• Easy to implementEasy to implement
•• Pretty fastPretty fast
•• Let the clusters move towards the dataLet the clusters move towards the data
•• Easy to visualize resultsEasy to visualize results
•• Can be sensitive to starting structureCan be sensitive to starting structure
•• No guarantee of convergence to goodNo guarantee of convergence to good

clusters.clusters.
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1.1. Similar lung cancers cluster together.Similar lung cancers cluster together.
2.2. Cancers from same person clusterCancers from same person cluster

together.together.
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Clustering Lung CancerClustering Lung Cancer
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Clustering Lung CancerClustering Lung Cancer

Garber, Troyanskaya et al. (2001) Proc. Natl. Acad. Sci. USA 98, 13784-13789
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Clustering vs. ClassificationClustering vs. Classification

ClusteringClustering uses the primary data to group together uses the primary data to group together
measurements, with no information from othermeasurements, with no information from other
sources.  Often called sources.  Often called ““unsupervised machineunsupervised machine
learning.learning.””

ClassificationClassification uses known groups of interest (from uses known groups of interest (from
other sources) to learn the features associatedother sources) to learn the features associated
with these groups in the primary data, and createwith these groups in the primary data, and create
rules for associating the data with the groups ofrules for associating the data with the groups of
interest.  Often called interest.  Often called ““supervised machinesupervised machine
learning.learning.””
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Graphical RepresentationGraphical Representation

A

B

Two features f1 (x-coordinate) and f2 (y-coordinate)
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ClustersClusters

A

B

Two features f1 (x-coordinate) and f2 (y-coordinate)
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Apply external labels for classificationApply external labels for classification

A

B

RED group and BLUE group now labeled

Copyright Russ B. AltmanCopyright Russ B. Altman

Classifying LymphomasClassifying Lymphomas
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TradeoffsTradeoffs

Clustering is not biased by previousClustering is not biased by previous
knowledge, but therefore needs strongerknowledge, but therefore needs stronger
signal to discovery clusters.signal to discovery clusters.

Classification uses previous knowledge, so canClassification uses previous knowledge, so can
detect weaker signal, but may be biased bydetect weaker signal, but may be biased by
WRONG previous knowledge.WRONG previous knowledge.
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Methods for ClassificationMethods for Classification

•• Linear ModelsLinear Models

•• Logistic Logistic RegressianRegressian

•• NaNaïïve ve BayesBayes

•• Decision TreesDecision Trees

•• Support Vector MachinesSupport Vector Machines
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Linear ModelLinear Model
Each gene, g,  has list of n measurements at eachEach gene, g,  has list of n measurements at each

condition, [f1 f2 f3condition, [f1 f2 f3……fn].fn].

Associate each gene with a 1 if in a group of interest,Associate each gene with a 1 if in a group of interest,
otherwise a 0.otherwise a 0.

Compute weights to optimize ability to predictCompute weights to optimize ability to predict
whether genes are in group of interest or not.whether genes are in group of interest or not.

Predicted group = SUM [ weight(i) * Predicted group = SUM [ weight(i) * fifi]]

If If fi fi always occurs in group 1 genes, then weight isalways occurs in group 1 genes, then weight is
high.  If never, then weight is low.high.  If never, then weight is low.

Assumes that weighted combination works.Assumes that weighted combination works.

Copyright Russ B. AltmanCopyright Russ B. Altman

Linear ModelLinear Model

A

B

PREDICT RED if  high value for A and low value for B,
(high weight on x coordinate, negative weight on y)
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Logistic RegressionLogistic Regression
(intro http://personal.ecu.edu/(intro http://personal.ecu.edu/whiteheadjwhiteheadj/data//data/logitlogit/)/)

p = probability of being in group of interestp = probability of being in group of interest
f = vector of expression measurementsf = vector of expression measurements

Log[p/(1-p)] = a+Log[p/(1-p)] = a+ββ f f

 or or

p = p = eeββff+a+a/(1+/(1+eeββff+a+a))

Use optimization methods to find Use optimization methods to find ββ (vector) (vector)
that maximizes the difference between twothat maximizes the difference between two
groups. Then, can use equation to estimategroups. Then, can use equation to estimate
membership of a gene in a group.membership of a gene in a group.
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Logistic ModelLogistic Model

A

B

PREDICT RED if  high value for A and low value for B,
(high weight on x coordinate, negative weight on y), but with

Sigmoid transition from low prob to high prob.
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Bayes Bayes Rule for ClassificationRule for Classification
BayesBayes’’ Rule:  Rule:  p(hypothesis|data) =  p(hypothesis|data) = 

p(data|hypothesis)p(hypothesis)/p(data)p(data|hypothesis)p(hypothesis)/p(data)

p(group 1| f) = p(f|group1) p(group1)/p(f)p(group 1| f) = p(f|group1) p(group1)/p(f)

p(group 1|f) = probability that gene is in group 1p(group 1|f) = probability that gene is in group 1
give the expression datagive the expression data

p(f) = probability of the datap(f) = probability of the data

p(f|group 1) =  probability of data given that genep(f|group 1) =  probability of data given that gene
is in group 1is in group 1

p(group 1)  = probability of group 1 for a givenp(group 1)  = probability of group 1 for a given
gene (prior)gene (prior)
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NaNaïïve ve BayesBayes
Assume all expression measurements for a gene areAssume all expression measurements for a gene are

independent.independent.

Assume p(f) and p(group1) are constant.Assume p(f) and p(group1) are constant.

P(f|group 1) = p(f1&f2P(f|group 1) = p(f1&f2……fn|group1)fn|group1)
= p(f1|group1) * p(f2|group1)= p(f1|group1) * p(f2|group1)……* p(fn|group1)* p(fn|group1)

Can just multiply these probabilities (or add theirCan just multiply these probabilities (or add their
logs), which are easy to compute, by counting uplogs), which are easy to compute, by counting up
frequencies in the set of frequencies in the set of ““knownknown”” members of members of
group 1.group 1.

Choose a cutoff probability for saying Choose a cutoff probability for saying ““Group 1Group 1
member.member.””
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NaNaïïve ve BayesBayes

A

B

If P(Red|x=A) * P(Red| y = 0) = HIGH, so assign to RED
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Decision TreesDecision Trees

Consider an n-dimensional graphConsider an n-dimensional graph
of all data points (f, geneof all data points (f, gene
expression vectors).expression vectors).

Try to learn cutoff values for eachTry to learn cutoff values for each
fi fi that separate different groups.that separate different groups.
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Decision TreesDecision Trees
If x  < A and y > B => BLUE

If Y < B OR Y >B and X > A => RED

A

B
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Support Vector MachinesSupport Vector Machines

Draw a line that passes close to the members ofDraw a line that passes close to the members of
two different groups that are the mosttwo different groups that are the most
difficult to distinguish.difficult to distinguish.

Label those difficult members the Label those difficult members the ““supportsupport
vectors.vectors.””  (Remember, all points are vectors).  (Remember, all points are vectors).

For a variety of reasons (discussed in theFor a variety of reasons (discussed in the
tutorial, and the Brown et al paper to sometutorial, and the Brown et al paper to some
degree), this choice of line is a good one fordegree), this choice of line is a good one for
classification, given many choices.classification, given many choices.
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Support Vectors and Decision LineSupport Vectors and Decision Line

A

B

(One point left out)
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Support Vectors and Decision LineSupport Vectors and Decision Line

A

B

(Bad point put back in…Can penalize boundary line for
bad predictions

PENALTY based on
distance from line
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Choose boundary line that isChoose boundary line that is
closest to both support vectorsclosest to both support vectors

 

1/||w|| 
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Notes about Notes about SVMsSVMs
If the points are not easily separable in n dimensions,If the points are not easily separable in n dimensions,

can add dimensions (similar to how we mapped lowcan add dimensions (similar to how we mapped low
dimensional SOM grid points to expressiondimensional SOM grid points to expression
dimensions).dimensions).

Dot product is used as measure of distance betweenDot product is used as measure of distance between
two vectors.  But can generalize to an arbitrarytwo vectors.  But can generalize to an arbitrary
function of the features (expression measurements)function of the features (expression measurements)
as discussed in Brown and associated as discussed in Brown and associated BurgesBurges
tutorial.tutorial.
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Evaluating Yes/No ClassifiersEvaluating Yes/No Classifiers

True PositivesTrue Positives
False PositivesFalse Positives
True NegativesTrue Negatives
False NegativesFalse Negatives

Sensitivity = TP/(TP + FN)Sensitivity = TP/(TP + FN)
Specificity = TN/(TN + FP)Specificity = TN/(TN + FP)
Positive Predictive Value = TP/(TP + FP)Positive Predictive Value = TP/(TP + FP)

ROC Curve = Plot Sensitivity vs. SpecificityROC Curve = Plot Sensitivity vs. Specificity
(or Sensitivity vs. 1-Specificity)(or Sensitivity vs. 1-Specificity)
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STOP LECTURE ISTOP LECTURE I
HEREHERE


