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Measuring the expression of
genes in cells

Fundamental dogma of biology:
DNA —» mRNA —» Protein = Function
Sequencing technologies gives us DNA sequence.

How can we get a sense for which genes are turned
on/off in a cell?

Measure expression levels in a population of cells
(that are thought to be responding in similar
manner).




Microarrays: DNA Base
Pairing

Spotted microarrays: protocol
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Affymetrix chip technology

Instead of putting down intact genes on the chip,
these chips put down N-mers of a certain length
(around 20) systematically onto a chip by
synthesizing the N-mers on the spots.

Labelled mRNA is then added to the chip and a
*pattern® of binding (based on which 20-mers
are in the mRNA sequence) is seen.

Bioinformatics is used to deduce the mRNA
sequences that are present




Affymetrix fabrication
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Agilent Technology: Inkjet
technology used to put down DNA

Compare spotted & Affy/Agilent chips

REMEMBER: Also control/reference DNA competing (in green)




Reproducibility of data sets

* mRNA preparation & labelling
» Hybridization conditions

* Inhomogeneities on slide

* Non-specific hybridization

* Image analysis

* Background levels

* Spot shape

* Spot quantification

* Biological variation...

What are expression arrays good for?

* Follow population of (synchronized) cells over time, to
see how expression changes (vs. baseline).
EXAMPLES: yeast cells after exposure to heat, cancer
cells over time.

* Analyze different populations of cells to see how
expression differs. EXAMPLE: Different types of lung
cancer cells

NOTE: there are also non-expression uses of arrays,
such as assessing presence/absence of sequences in the
genome (e.g. polymorphisms in sequence)
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Why do we care about
clustering expression data?

If two genes are expressed in the same way, they
may be functionally related.

If a gene has unknown function, but clusters with
genes of known function, this is a way to assign its
general function.

We may be able to look at high resolution
measurements of expression and figure out which
genes control which other genes.

E.g. peak in cluster 1 always precedes peak in
cluster 2 => ?cluster 1 turns cluster 2 on?
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Methods for Clustering

K-means

Hierarchical Clustering

Self Organizing Maps

Trillions of others.
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Need a distance metrix for two n-
dimensional vectors (e.g., for n

%ressmn measurements)
1. Euclidean Distance

D(X, Y) = sqrt [(x;-y,)* + (X,-¥5)% --.(X,-¥,)* |
(Also can normalize by variance of each = Mahalonobis Distance)

2. Correlation coefficient

R(X,Y) = cov(xy)/sd(x)sd( )
=1/n * SUM [ (x; -XO)/O’ * (¥iY,o)/0y |

Where = g_= sqrt (E(x?) - E(x)?)
and E(X) = expected value of x = average of x

Other choices for distance too...

Other distance metrics...

3. Manhattan Distance

D(X, Y) = Sum|| x;-y;|] over all i

2. Chebychev distance

D(X, Y) = Max| x;-y;| over all i

3. Angle between vectors

DX, Y) =x. y/(||x]| ||¥lD), [|x|]| = length of x , .= dot prod
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Measuring quality of clusters

 Compare INTRA-cluster distances with
INTER-cluster distances.

Good clusters should have big difference.
* Compare computed clusters with known
clusters (if there are any) to see how they

match.

Good clusters will contain all known and no
wrong cluster members.

INTRA-cluster distance vs. INTER-cluster distance
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INTRA-cluster distance vs. INTER-cluster distance

K-means

(Computationally attractive)

1. Generate random points (“cluster
centers”) in n dimensions

2. Compute distance of each data point to
each of the cluster centers.

3. Assign each data point to the closest cluster
center.

4. Compute new cluster center position as
average of points assigned.

S. Loop to (2), stop when cluster centers do
not move very much.
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Graphical Representation

Two features f1 (x-coordinate) and f2 (y-coordinate)

K-means issues
Fast, O(N)

Hard to know what K to choose
— Try a bunch, and measure quality

Hard to know where to seed the clusters

Results can change drastically with different
seeds.
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INTRA-cluster distance vs. INTER-cluster distance

INTRA-cluster distance vs. INTER-cluster distance
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Hierarchical Clustering
(bottom up)

Used in Eisen et al

(Nodes = genes or groups of genes. Initially all nodes are
rows of data matrix)

. Compute matrix of all distances (they used
correlation coefficient)

. Find two closest nodes.

. Merge them by averaging measurements (weighted)

. Compute distances from merged node to all others

. Repeat until all nodes merged into a single node

Hierarchical Clustering

1 [T [
] ]
1] ]
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How many clusters?
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Hierarchical Clustering

» Easy to understand & implement

* Can decide how big to make clusters by
choosing the “cut” level of the hierarchy

* Can be sensitive to bad data

* Can have problems interpreting the tree

* Can have local minima

Most commonly used method for microarray
data.

(Also “top-down” which requires splitting
large group successively)
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Self Organizing Maps

Used by Tamayo et al
(use same idea of nodes)

1. Generate a simple (usually) 2D grid of nodes
(x,y)

2. Map the nodes into n-dim expression vectors
(initially randomly)

(e.g. (x,y)->[000x000y 0000 O0])

3. For each data point, P, change all node
positions so that they move towards P. Closer
nodes move more than far nodes.

4. Iterate for a maximum number of iterations,
and then assess position of all nodes.
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SOM equations for updating
node positions

firi(N)= £(N) + 7 (d(N, Np), D) * [P- fi(N)]

f.(N) = position of node N at iteration i

P = position of current data point

P- £,(N) = vector from N to P

T = weighting factor or “learning rate” dictates how

much to move N towards P.

T (d(N, Np), i) = 0.02 T/(T+100 i) for d(N,Np) < cutoff
radius, else =0

T = maximum number of iterations
Decreases with iteration and distance of N to P

Graphical Representation

Two features f1 (x-coordinate) and f2 (y-coordinate)
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SOMs

* Impose a partial structure on the cluster
problem as a start

» Easy to implement

 Pretty fast

* Let the clusters move towards the data

» Easy to visualize results

» Can be sensitive to starting structure

* No guarantee of convergence to good
clusters.
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Cum. Survival

Time (months)
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Clustering Lung Cancer

High in group 1, low in group 3 High in group 3, low in groups 1 and 2

ICAM-1 (CD54) solute carrier family 7, member 5 (CD98)
protein tyrosine kinase 7 (dimeric)  ataxia-telangiectasia D-associated
carcinoembryonic antigen related 1 KIAA1201
dipeptidyl peptidase IV (CD26) prostaglandin E synthase
hyroid transcription factor cathepsin L
epididymis-specific EST, Hs.11607
dickkopf homolog 1
LTB4-12 hydroxydehydrogenase
collagen, type IX, alpha 2 vascular endothelial growth factor C
ERO1-like
High in group 2, low in group 3

High in all Adenos, low in squamous

ornithine decarboxylase
citron v-erb-b2 viral oncogene homolog 2
deleted in oral cancer-related 1 similar to phosphatidylcholine transfer 2
cartilage paired (dimeric) EST, Hs.98803

hyroid transcription factor islet cell autoantigen 1 (69kD)

lsodium channel, epithelial, alpha EST, Hs.102406

epididymis-specific

hepsin

Garber, Troyanskaya et al. (2001) Proc. Natl. Acad. Sci. USA 98, 13784-13789

Clustering vs. Classification

Clustering uses the primary data to group together
measurements, with no information from other
sources. Often called “unsupervised machine
learning.”

Classification uses known groups of interest (from
other sources) to learn the features associated
with these groups in the primary data, and create
rules for associating the data with the groups of
interest. Often called “supervised machine
learning.”
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Graphical Representation

Two features f1 (x-coordinate) and f2 (y-coordinate)

Clusters

Two features f1 (x-coordinate) and f2 (y-coordinate)
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Apply external labels for classification

RED group and BLUE group now labeled

=2

Classifying Lymphomas
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Tradeoffs

Clustering is not biased by previous
knowledge, but therefore needs stronger
signal to discovery clusters.

Classification uses previous knowledge, so can
detect weaker signal, but may be biased by
WRONG previous knowledge.

Methods for Classification

* Linear Models

* Logistic Regressian

* Naive Bayes
* Decision Trees

* Support Vector Machines
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Linear Model

Each gene, g, has list of n measurements at each
condition, [f1 f2 f3...fn].

Associate each gene with a 1 if in a group of interest,
otherwise a (.

Compute weights to optimize ability to predict
whether genes are in group of interest or not.

Predicted group = SUM [ weight(i) * fi]
If fi always occurs in group 1 genes, then weight is

high. If never, then weight is low.
Assumes that weighted combination works.

Linear Model
PREDICT RED if high value for A and low value for B,
(high weight on x coordinate, negative weight on y)

28



Logistic Regression
(intro http://personal.ecu.edu/whiteheadj/data/logit/)

p = probability of being in group of interest
f = vector of expression measurements

Log[p/(1-p)] = a+f f
or
p= eﬁf+a/(1+eﬁf+a)

Use optimization methods to find f (vector)
that maximizes the difference between two
groups. Then, can use equation to estimate
membership of a gene in a group.

Logistic Model
PREDICT RED if high value for A and low value for B,

(high weight on x coordinate, negative weight on y), but with
Sigmoid transition from low prob to high prob.
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Bayes Rule for Classification

Bayes’ Rule: p(hypothesis|data) =
p(datalhypothesis)p(hypothesis)/p(data)

p(group 1| f) = p(tjgroupl) p(groupl)/p(t)

p(group 1|f) = probability that gene is in group 1
give the expression data

p(f) = probability of the data

p(flgroup 1) = probability of data given that gene
is in group 1

p(group 1) = probability of group 1 for a given
gene (prior)

Naive Bayes
Assume all expression measurements for a gene are
independent.

Assume p(f) and p(groupl) are constant.

P(figroup 1) = p(f1&f2...fn|groupl)
= p(fl|groupl) * p(f2|groupl)...* p(fn|groupl)

Can just multiply these probabilities (or add their
logs), which are easy to compute, by counting up
frequencies in the set of “known” members of
group 1.

Choose a cutoff probability for saying “Group 1
member.”
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Naive Bayes
If P(Red|x=A) * P(Red| y = 0) = HIGH, so assign to RED

Decision Trees

Consider an n-dimensional graph
of all data points (f, gene
expression vectors).

Try to learn cutoff values for each
fi that separate different groups.
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Decision Trees
Ifx <Aandy>B =>BLUE

IfY<BORY >Band X> A =>RED

Support Vector Machines

Draw a line that passes close to the members of
two different groups that are the most
difficult to distinguish.

Label those difficult members the “support
vectors.” (Remember, all points are vectors).

For a variety of reasons (discussed in the
tutorial, and the Brown et al paper to some
degree), this choice of line is a good one for
classification, given many choices.
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Support Vectors and Decision Line

(One point left out)

Support Vectors and Decision Line

(Bad point put back in...Can penalize boundary line for
bad predictions

PENALTY based on

distance from line
®
®
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Choose boundary line that is
closest to both support vectors

Notes about SVMs

If the points are not easily separable in n dimensions,
can add dimensions (similar to how we mapped low
dimensional SOM grid points to expression
dimensions).

Dot product is used as measure of distance between
two vectors. But can generalize to an arbitrary
function of the features (expression measurements)

as discussed in Brown and associated Burges
tutorial.
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Evaluating Yes/No Classifiers

True Positives
False Positives
True Negatives
False Negatives

Sensitivity = TP/(TP + FN)
Specificity = TN/(TN + FP)
Positive Predictive Value = TP/(TP + FP)

ROC Curve = Plot Sensitivity vs. Specificity
(or Sensitivity vs. 1-Specificity)

Technelegy
Development

Binding Sites &
Multiple Alignment
to |dentify Them
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Technelegy
Development

Binding Sites &
Multiple Alignment
to |dentify Them
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