
SEQUENCE ALIGNMENT ALGORITHMS

Why compare sequences?

• Reconstructing long sequences from overlapping
sequence fragment

• Searching databases for related sequences and sub-
sequences

• Storing, retrieving and comparing sequences in
databases

• Exploring evolutionary relationships among species

• Finding informative elements in sequences

• Comparing sequences for similarities

Biological Motivations Lots of sequences with unknown
structure/function. A few sequences with known
structure/function

• If they align, they are similar, maybe due to com-
mon descent

• If they are similar, then they may have same struc-
ture/function

• If one of them has known structure/function, then
alignment to the other yields insight about how
structure/function works.

1

Similarity and Difference

All contemporary genetic material have one common

ancestral DNA

Differences between families of contemporary species

are due to local mutations during the course of evo-

lution

Local mutations :

• Insertion of a base or several bases to the sequence

• Deletion of a base or more from the sequence

• Substitution replacing a sequence base by another

Insertion and deletion are reverse of each other. They

are called indel

Distance given two sequences: the minimal sum of weights

for a set of mutations transforming one into the

other.

Similarity given two sequences: the maximal sum of

weights corresponding to resemblance of the two se-

quences

2

Simplest Model: Edit Distance

Definition The minimal number of edit operations (in-

sertions, deletions and substitutions) needed to trans-

form one sequence into the other. Edit distance can

be used to roughly measure the number of DNA repli-

cations that occurred between two DNA sequences

Example Given a c c t g a and a g c t a, the minimal

number of edit operations required to transform one

into the other is 2:

a c c t g a

a g c t g a

a g c t a

a g c t g a

a g c t - a

Remark The definition of edit distance implies that all

operations are done on one sequence only and the

representation shown above might make false impres-

sion that the order of the changes is known

3

What is Alignment?

An alignment of two sequences S and T is obtained
by first inserting chosen spaces, either into, at the
ends of or before S and T , and then placing the two
resulting sequences one above the other so that ev-
ery character or space in either sequence opposite
a unique character or a unique space in the other
sequence

A scoring function is used to evaluate the goodness of
the alignment

An algorithm searches for the best alignment, represent-
ing the minimal difference or the maximum similarity
between S and T

Biological models consider the significance of each mu-
tation and score the alignment accordingly. The
alignment distance can be used to estimate the bio-
logical difference of two sequences

Example The aligned sequences

SEQ 1 GTAGTACAGCT-CAGTTGGGATCACAGGCTTCT

SEQ 2 GTAGAACGGCTTCAGTTG---TCACAGCGTTC-

Distance 1 : match 0, substitution 1, indel 2 ⇒dis=14
Distance 2 : match 0, d(A,T)=d(G,C)=1, d(A,G)=1.5, indel 2, ⇒dis=14.5

Similarity : match 1, substitution 0, indel -1.5 ⇒sim=16.5

4

Global Pairwise Alignment

Given two sequences S and T of roughly the same

length. What is the maximum similarity between them?

Find an optimal alignment. The term global emphasizes

that for each sequence, the entire sequence is involved.

Naive approach Generate all possible alignments and

then pick the best one (the one that with maximum

similarity value. Very slow algorithm since the num-

ber of alignments between two sequence is exponen-

tial, that is O(22n) for length n. Below is faster

method

Dynamic Programming consists of solving an instance

of a problem by taking advantage of already com-

puted solutions for smaller instance of the same prob-

lem. Given S and T , instead of determining the sim-

ilarity between S and T as whole sequences only, we

build up the solution by determining all similarities

between arbitrary prefixes of the two sequences. We

start with the shorter prefixes and use previously com-

puted results to solve the problem for larger prefixes

A prefix of S is any substring of S of the form S1...j for

0 ≤ j ≤ |S|. We admit j = 0 and define S1...0 as being

the empty string, which is a prefix of S as well.

5

Global Alignment by Dynamic Programming

Given S and T , with |S| = n and |T | = m

(i.e. S = S1...n and T = T1...m).

Let σ be the scoring function. We will use

σ(a, a) = +1, for a match

σ(a, b) = −1, for a substitution

σ(a,−) = σ(−, a) = −2, for an indel

Define V (i, j) as the similarity value of an optimal align-

ment of S1...i and T1...j

Problem is to compute V (n, m) by dynamic program-

ming

Base cases: given i, j > 0 we have

V (0,0) = 0

V (i,0) = V (i− 1,0) + σ(Si,−) =
∑k=i

k=0 σ(Sk,−)

V (0, j) = V (0, j − 1) + σ(−, Tj) =
∑k=j

k=0 σ(−, Tk)

The basis for V (i,0) says that if i characters of S are

to be aligned with 0 characters of T , then they must

all be matched with spaces. The basis for V (0, j) is

analogous

6

Global Alignment by Dynamic Programming

Let us consider an optimal alignment of the prefixes

S1...i and T1...j, i, j > 0. In particular, observe the last

aligned pair of characters in such an alignment. This

last pair must be one of the following three cases

1. (Si,−): The score in this case is the score σ(Si,−)

of aligning Si with a space plus the score V (i−1, j)

of aligning the prefixes S1...i−1 and T1...j

2. (Si, Tj): The score in this case is the score σ(Si, Tj)

of aligning Si with Tj plus the score V (i− 1, j− 1)

of aligning the prefixes S1...i−1 and T1...j−1

3. (−, Tj): The score in this case is the score σ(−, Tj)

of aligning a space with a Tj plus the score V (i, j−
1) of aligning the prefixes S1...i and T1...j−1

The optimal alignment of S1...i with T1...j chooses

whichever among these three possibilities has the

greatest similarity value

To summarize, we have the following recurrence relation

for i, j > 0

V (i, j) = max



V (i− 1, j) + σ(Si,−)

V (i− 1, j − 1) + σ(Si, Tj)

V (i, j − 1) + σ(−, Tj)

7

Tabular Computation of Optimal Alignment

Let |S| = n and |T | = m. There are n + 1 and m + 1
prefixes of S and T , respectively (including the empty
string). We can arrange the calculations in an (n +
1)× (m+1) array V where entry V (i, j) contains the
similarity between S1...i and T1...j

We compute V (i, j) for all possible values of i and j.
We start from smaller i, j and increasing them, filling
in the table in a row-wise (or column-wise) manner.
Finally, V (n, m) is the required maximum similarity
between S and T .

Algorithm: Similarity

Input: σ, S and T

Output: similarity between S and T

For i = 0 to n do

For j = 0 to m do

begin

V [i, j]← max



V [i− 1, j] + σ[Si,−]

V [i− 1, j − 1] + σ[Si, Tj]

V [i, j − 1] + σ[−, Tj]
end

Return V [n, m]

Time complexity is O(nm)

Space complexity is O(nm)

Complexity is quadratic in both time and space
8

Recovering the Optimal Alignments
We know how to compute the similarity between S and
T . But how to determine the optimal alignment itself,

and not just its similarity value?

Solution: Retrace/Backtrack Algorithm Similarity from
entry V [n, m] back to entry V [0,0], determining which
entries were responsible for the current one. Given
matrix V , an optimal alignment can be constructed
from right to left.

Recursive Algorithm: Align
Input: indices i, j, σ and matrix V of Algorithm Similarity
Output: optimal alignment between S and T in align-S, align-T, and length in l
If i = 0 and j = 0 then

l← 0
Else

if i > 0 and V [i, j] = V [i− 1, j] + σ(Si,−) then
Align(i− 1, j, l)
l← l + 1
align-S[l]← S[i]
align-T[l]← −

Else
if i > 0 and j > 0 and V [i, j] = V [i− 1, j − 1] + σ(Si, Tj) then

Align(i− 1, j − 1, l)
l← l + 1
align-S[l]← S[i]
align-T[l]← −T [j]

Else // has to be j > 0 and V [i, j] = V [i, j − 1] + σ(−, Tj)
Align(i, j − 1, l)
l← l + 1
align-S[l]← −
align-T[l]← T [j]

Time complexity is O(n + m)

Space complexity is O(nm)

Complexity is linear in time
9

10

Local Pairwise Alignment

Given two sequences S and T . What is the maximum
similarity between a substring of S and a substring of T .

Find most similar substrings

In many applications, two sequences may not be highly
similar as a whole, but may contain sections with high
resemblance. Some biological motivations:

• Ignore stretches of non-coding DNA: introns are
more likely to accumulate mutations than exons.
When searching for a local alignment between two
stretches of DNA (from 2 different species), find-
ing a best match between is likely to be between
two exons

• Protein domains: proteins of different kind/species,
often exhibit local similarities called homeoboxes.
These homeoboxes can be found by local align-
ment.

Example Consider the two sequences

S = g g t c t g a g
T = a a a c g a

If match = 2 and indel/substitution = -1, then the best local
alignment is

c t g a (∈ S)
c - g a (∈ T)

11

Computing Local Pairwise Alignment

Naive approach Align by, dynamic programming, every
substring of S with every substring of T and then
pick the alignment that yields the maximum simi-
larity. Time complexity is O(n3m3) and hence such
approach is too slow

Setup for local alignment by dynamic programming

1. The empty string λ is the string with |λ| = 0

2. U is a prefix of S iff U = S1...k or U = λ, for some
1 ≤ k ≤ n

3. U is a suffix of S iff U = Sk...n or U = λ, for some
1 ≤ k ≤ n

4. V (i, j) denotes the similarity value of an optimal
(global) alignment of α and β over all suffixes α

of S1...i and all suffixes β of T1...j

Dynamic Programming Fill in a table with the values
of V (i, j), with increasing i, j. That is, each entry
V (i, j) holds the highest score of an alignment be-
tween a suffix of S1...i and a suffix of T1...j. Since a
suffix of a prefix is just a substring, we find the opti-
mal pair of substrings by maximizing V (i, j) over all
possible pairs (i, j). The value of the optimal local
alignment can be any entry, whichever contains the
maximum

12

Local Alignment by Dynamic Programming

Bases cases: given any i, j we have

V (i,0) = 0

V (0, j) = 0

Since the optimal suffix to align with a string of

length 0 is the empty suffix

Consider an optimal alignment A of a suffix α of S1...i

and a suffix β of T1...j. There are four possible cases

1. α = λ and β = λ: in which case the alignment has

value 0

2. α 6= λ and the last matched pair in A is (Si,−): in

which case the remainder of A has value V (i−1, j)

3. α 6= λ and β 6= λ: in which case the remainder of

A has value V (i− 1, j − 1)

4. β 6= λ and the last matched pair in A is (−, Ti): in

which case the remainder of A has value V (i, j−1)

The optimal alignment chooses whichever of these

cases has greatest value

13

Local Alignment by Dynamic Programming

To summarize, we have the following recurrence relation
for i, j > 0

V (i, j) = max



0
V (i− 1, j) + σ(Si,−)

V (i− 1, j − 1) + σ(Si, Tj)

V (i, j − 1) + σ(−, Tj)

The maximum local similarity is given by
max1≤i≤n,1≤j≤m V (i, j)

Observe that the recurrence for computing local alignment is al-

most identical to the one used for computing global alignment.

The only difference is the new meaning of V (i, j) and the in-

clusion of 0 in the case of local suffix alignment. We can re-

construct optimal alignments by retracing from any maximum

entry to any zero entry

Time complexity is O(nm) for similarity, and O(n + m)
for alignment

Space complexity is O(nm) for similarity, and O(n + m)
for alignment

There is a modification of the dynamic programming algorithm (for both global

and local) that computes the maximum similarity in O(n+m) space and still

runs in O(nm) time. Reconstructing an alignment can be done in O(n + m)

space and O(nm) time with a divide and conquer approach [Hirschberg,

Myers and Miller]

14

End-Space Free Alignment

Given two sequences S and T , possibly of different
lengths. Find a best alignment between substrings of S
and T when at least one of these substrings is a prefix
of the original sequence and one (not necessarily the

other) is a suffix

Alignments are scored ignoring some of the end spaces
in the sequences. End spaces are those that appear
before first or after the last character in a sequence.

Biological Motivations

• Searching for regions of a long sequence that ap-
proximately the same as a given short sequence

• Searching for overlapping sequences in DNA frag-
ment assembly

Example Consider the two alignments below

SEQ 1 CAGCA-CTTGGATTCTCGG

SEQ 2 ---CAGCGTGG--------

SEQ 1 CAGCACTTGGATTCTCGG

SEQ 2 CAGC-----G-T----GG

With (global) scores −19 and −12, respectively. The
second is an optimal global alignment, however it is
not so interesting. If we ignore end spaces, the first
is pretty good, with score 3

15

End-Space Free Alignment Algorithm

The end-space free alignment algorithm is again a
variation of the global alignment algorithm

Base cases: V (0,0) = V (i,0) = V (0, j) = 0
This allows zero weight to leading indels in (at most) one of the sequences

Recurrence relation for i, j > 0

V (i, j) = max



0
V (i− 1, j) + σ(Si,−)

V (i− 1, j − 1) + σ(Si, Tj)

V (i, j − 1) + σ(−, Tj)

This is exactly the same recurrence relation as in global alignment algorithm

Search for

• i∗ such that V (i∗, m) = max1<i<n,m V (i, j)

• j∗ such that V (n, j∗) = maxn,1<j<m V (i, j)

We search for the largest value in last column and last row. Thus allowing

(at most) one sequence to end before the other, with zero weight for all

indels from there on

The score of the alignment will be max

{
V (n, j∗)
V (i∗, m)

We

can reconstruct the optimal alignment by retracing from the largest value

(between last row and column) to first row or column

16

Optimal Alignment with Gaps

Given two sequences S and T , possibly of different

lengths. Find a best alignment between the two

sequences using a gap penalty function

Definition A gap is any maximal, consecutive run of

spaces in a single sequence of a given alignment. The

length of a gap is the number of indels in it

Example Consider the alignment

SEQ 1 attc--ga-tggacc

SEQ 2 a--cgtgatt---cc

This alignment has four gaps and eight indels.

Biological Motivations

1. Insertion or deletion of large substrings often occurs as a
single mutational event, and are as likely as insertion or
deletion of a single base

2. Two proteins sequences might be relatively similar over sev-
eral intervals but differ in intervals where one contains a
protein subunit that the other does not.

3. cDNA matching

4. Need to score a gap as a whole when trying to align two
sequences as to avoid assigning high cost to these mutations

17

Affine Gap Penalty Model

The total penalty (weight) for a gap of length q > 1 is

WT = Wg + qWs

where Wg is the penalty for starting the gap, and Ws

is the penalty for extending the gap.

We want to find an optimal global (local, or end-space

free) alignment of S and T such that

l∑
i=1

σ(S′i, T
′
i) + Wg(#gaps) + Ws(#spaces)

is maximal. Where S′ and T ′ are S and T with spaces

inserted, and |S′| = |T ′| = l

Notations Define the following variables:

1. V (i, j): the value of an optimal alignment of S1...i

and T1...j

2. G(i, j): the value of an optimal alignment of S1...i

and T1...j whose last pair matches Si with Tj

3. F (i, j): the value of an optimal alignment of S1...i

and T1...j whose last pair matches Si with a space

4. E(i, j): the value of an optimal alignment of S1...i

and T1...j whose last pair matches a space with Tj

18

Affine Gap Penalty Algorithm

To align S and T , consider the prefixes S1...i and T1...j.
Any alignment of these prefixes is one of the following
three type:

1. S———i

T———j

alignment where Si and Tj are matched

2. S———i−−−−
T——————j

alignment where Si is matched with a character
strictly to the left of Tj. Alignment ends with a
gap in S.

3. S——————i

T———j −−−−
alignment of where Si is matched with a character
strictly to the right of Tj. Alignment ends with a
gap in T .

Base cases: given i, j > 0 we have

V (0,0) = 0

V (i,0) = E(i,0) = Wg + iWs

V (0, j) = F (0, j) = Wg + jWs

Look at indels and assign the correct values: not only
the weight of spaces (qWs), but also the weight of
initiating a gap (Wg)

19

Affine Gap Penalty Algorithm

We will define three recurrence relations, one for each G(i, j), E(i, j)

and F (i, j). Each will be calculated from previously computed

values. Take E(i, j) for example. We are looking at alignments

in which S ends to the left of T , there are two possible cases

for the previous alignment:

1. It looked the same, i.e. S ended to the left of T .

In this case, we only need to add another ”exten-

sion weight” to the value, forming the new weight

E(i, j − 1) + Ws

2. S and T ended at the same place (type 1 align-

ment). In this case, we need to add both the gap

”opening weight” and the gap ”extension weight”,

forming the new weight V (i, j) + Wg + Ws

Taking the maximum of the two yields the value E(i, j). Calcu-

lating F (i, j) and G(i, j) is done using similar arguments. V (i, j)

is calculated by simply taking the maximum of the three. As

in global alignment, we search for the value V (n, m), and trace

the alignment back using pointers created while filling the table

Recurrence relation for i, j > 0

V (i, j) = max{E(i, j), F (i, j), G(i, j)}

G(i, j) = G(i− 1, j − 1) + σ(Si, Tj)

E(i, j) = max{E(i, j − 1) + Ws, V (i, j − 1) + Wg + Ws}

F (i, j) = max{F (i− 1, j) + Ws, V (i− 1, j) + Wg + Ws}

20

Multiple Sequence Alignment

Definition A multiple alignment of strings S1, S2, . . . , Sk
is a series S′1, S′2, . . . , S′k such that

1. |S′1| = |S
′
2| = · · · = |S

′
k|

2. S′i is an extension of Si, obtained by insertions of
spaces

Example Given accdb, cadbd, abcdad we have

a c - c d b -

- c - a d b d

a - b c d a d

Biological Motivations

• protein databases are categorized by protein families (col-
lection of proteins with similar structure, function, or evolu-
tionary history)

• Comparing a new protein with a family requires to construct
a representation of the family and then compare the new
protein with the family representation

Scoring Metrics How to score a multiple alignment?

• Consensus Distance: the number of characters in all strings
Si that differ from the consensus string C:

∑
i D(Si, C)

• Evolutionary tree Distance the weight of the lightest phylo-
genetic tree that can be constructed from the sequences

• Sum of Pairs Distance: the sum of pairwise distances be-
tween all pairs of sequences

∑
i<j D(Si, Sj)

21

Multiple Alignment by Dynamic Programming

Generalization of global pairwise alignment algorithm:

Let |S1| = n1, |S2| = n2, . . . , |Sk| = nk, fill in a k-dimensional table

of size (n1 + 1) × (n2 + 1) × · · · × (nk + 1) (that is O(Πk
i=1ni)).

Computation of each entry depends on 2k − 1 adjacent entries,

corresponding to the possibilities for the last match in an op-

timal alignment: any of the 2k subsets of the k strings could

participate in that match, except for the empty subset

Time and space complexity: assume for simplicity that
n1 = n2 = · · · = nk = n then

1. Space complexity: O(nk)

2. Time complexity: O(k2knk)

(a) Fill in entire table: O(nk)

(b) Compute each entry: O(2k)

(c) Computation of σ: O(k) O(k2)

If n ≈ 350 (typical length for proteins), the dynamic
programming algorithm for MSA problem is practical
only for small values of k (perhaps 3 or 4)

MSA problem is NP-complete: no polynomial time al-
gorithm exists (and will never be found) to solve the
problem

Solution: use heuristics (genetic algorithms, neural net-
works, simulated annealing, tabu search, hill-climbing,
. . .) to find good approximate solutions to MSA
problem

22

Center Star Heuristic for MSA

Define distance D(S, T) =
∑l

i=1 δ(S′i, T
′
i) the score of a

multiple alignment of S and T (where S′ and T ′ are
S and T with spaces inserted)

Star alignment method consists in building a multi-

ple sequence alignment Mc based upon the optimal

global pairwise alignments between a fixed sequence

Sc (the center) and all others. Each pairwise align-

ment is added to Mc using Sc as a guide

Algorithm: Center Star
Input: δ, S = {S1, S2, . . . , Sk}
Output: optimal multiple alignment of S1, S2, . . . , Sk

Find the center Sc such that
∑

i6=c D(Sc, Si) is minimal

S = {S1, S3, . . . , Sk−1}
For i = 1 to k − 1 do

Find an optimal global alignment [S′c, S
′
i] between Sc and Si

Let Mc = {best S′c}
For i = 1 to k − 1 do
begin

Add S′i to Mc

If needed, add spaces to all pre-aligned strings
end
Return Mc

Time Complexity: O(k2n2), n is maximum length

Approximation Analysis: Center Star Heuristic produces

a multiple alignment whose sum-of-pairs (SP) value

is less than twice that of the optimal SP alignment

23

Multiple Alignments With Profile

Definition Given a multiple alignment M of a set of
strings. a profile for M specifies for each column the
frequency that each character appears in the column

Profile is used to represent a family of proteins and to
identify the family of an unknown sequence

Example Consider the following MSA

a b c - a

a b a b a

a c c b -

c b - b c

Its corresponding profile is
C1 C2 C3 C4 C5

a 75% 25% 50%
b 75% 75%
c 25% 25% 50% 25%
− 25% 25% 25%

Aligning a string S to a profile P will tell us how well S (or some

substring of it) fits P . Given the column positions C of P , the

alignment consists of inserting spaces into S and C as in pure

string alignment. For instance, an alignment of aabbc

to P is:

a a b - b c

1 - 2 3 4 5

24

String-to-Profile Alignment Algorithm

How to score a string to profile alignment?

1. Scoring a column j: equivalent to aligning Sj to
each character at column Cj. Then
σ(j) =

∑i=k
i=1 σ(Si, ij)pij

pij is frequency of i-th character in column j,
k is number of characters in P

2. Score of an alignment:
∑j=l

j=1 σ(j)
l is length of alignment

How to find the optimal global string to profile align-
ment? By dynamic programming

• Let the score for aligning a character x with col-
umn j be δ(x, j) =

∑
y σ(x, y)pyj

• Let V (i, j) denote the value of the optimal align-
ment of S1...i with the first j columns of C. The
recurrences for computing optimal global string to
profile alignment are

V (0,0) = 0

V (i,0) =
∑

k≤i σ(Sk,−)

V (0, j) =
∑

k≤j δ(−, k)

V (i, j) = max


V (i− 1, j) + σ(Si,−)

V (i− 1, j − 1) + δ(Si, j)

V (i, j − 1) + δ(−, j)

25

Other MSA Heuristics

Iterative Pairwise Alignment First align two string whose
alignment score is the best over all pair. Then itera-
tively find a string with the smallest distance to any
of the already aligned strings and add it to (align it
with) the growing alignment

Algorithm: Iterative Alignment
Find a best pair and align it
While (not done)

Find the nearest string to the aligned set
Align with the previously aligned group

Alignment is either done as in Center Star or as in String-to-

Profile alignments methods

Progressive Alignment Algorithms There might be cases
in which some of the strings are very near to each
other and form clusters. It might be an advantage
to align strings in the same cluster first, and then
merge the clusters of strings. The problem is how to
define near and cluster. It also require the use of a
clustering algorithm

Consensus Alignment Given a MSA M of S1, S2, . . . , Sk, the

consensus character of column i of M is the character ci that

minimizes the sum of distances, di =
∑j=k

j=1 σ(S′ij
, ci) to it from all

the characters in column i; that ci is the most common character

in column i. The consensus string is the concatenation c1c2 . . . cl

of all consensus characters, where l is the length of M . The

alignment error of the consensus (or M) is
∑i=l

i=1 di. Problem is

to find a M with the smallest alignment error

26

Sequence Database Search

Alignment algorithms and heuristics discussed so far
cannot be used when searching a database of size
109–1010 for the closest match to a query string of
length 200–500 (for proteins) or length 1000–1500
(for DNAs or RNAs)

Solutions:

1. Implement dynamic programming in hardware

2. Use parallel or distributed hardware

3. Design efficient search heuristics:
Heuristics are algorithms that give only approxi-
mate solutions to given problems. Solutions are
not guaranteed to be optimal. However, heuris-
tics are much faster than exact algorithms and are
relatively cheap and available to any researcher.
They are based on the observations that

(a) Even linear time is slow for a huge database of
size over 109

(b) Preprocessing of the database is desirable

(c) Substitutions are much more likely than indels

(d) We expect similar sequences to contain lots of
segments with matches or substitutions, but with-
out indels or gaps. These segments can be used
as starting points for further searching

27

Professional Sequence Database Searcher

How to search a database of more than 13 millions se-

quences (such as GenBank)?

Given a new unknown sequence

1. Compare the new sequence with PROSITE and

BLOCKS databases for sequence motifs

2. Search the DNA and protein sequence databases

(GenBank, Swiss-Prot, . . .) for sequences highly

similar to the new sequence (usually a local simi-

larity)

• Using approximate heuristics such as BLAST or

FASTA

3. If needed, compute optimal similarity on BLAST

or FASTA results using any algorithm/heuristic

4. Refinement by using profiles (substitution matri-

ces) such as PAM and BLOSUM matrices

Searcher may use many different heuristics whose results

will be combined in some way

28

BLAST: Basic Local Alignment Search Tool

Motivations: increase search speed by finding fewer and
better hot spots

Finds regions of high local similarity in alignments with-
out gaps, using a profile

Definitions:

• Segment pair : pair of same length substrings of S1 and S2 aligned
without gaps

• Locally maximal segment (LMS): segment whose alignment score (with-
out gaps) cannot be improved by extending or shortening it

• Maximum segment pair (MSP in S1 and S2: segment pair with the
maximum score over all segment pairs in S1 and S2

• High scoring pair : a MSP above a cut-off score σ

BLAST heuristic

1. Break query sequence into words of length w

2. Given threshold τ , find all hits: w-length words of database
strings that align with the query words with alignment score
higher than τ

3. Extend each hit to a LMS, and check if its score is above
cut-off σ, i.e. if the hit is a HSP. The extension of a hit
terminates when the score falls below a drop-off threshold

4. Return all HSPs

Parameters:

1. w → speed

2. τ → speed and sensitivity (most critical parameter)

29

