
ASSEMBLY LANGUAGE FUNDAMENTALS

• Assembly language statements are either directives

or instructions

• Instructions are executable statements. They are

translated by the assembler into machine instruc-

tions. Ex:

CALL MySub ;transfer of control

MOV AX, 5 ;data transfer

• Directives tells the assembler how to generate ma-

chine code and allocate storage. Ex:

count db 50 ;creates 1 byte of

storage initialized to 50

1

Template for Assembly Language Programs

.386

.model Flat

include Cs266.inc

.data

... ;data allocation directives here

...

.code

main:

... ;program instructions here

...

Ret

end

• .386: Directive to accept all instructions of 386 and
previous processors (use .586 to assemble Pentium
specific instructions)

• main: Label of the entry point of the program (first
instruction to execute)

• end: Directive that marks the end of the program

• ret: Instruction that returns the control to the caller
(here Win32 console)

• Macros to perform I/O are included in Cs266.inc

2

The FLAT Memory Model

• The .model flat directive tells the assembler to gen-

erate code that will run in protected mode and in

32-bit mode

• Also asks the assembler to do whatever is needed

in order that code, stack and data share the same

32-bit memory segment

All the segment registers will be loaded with the

correct values at load time and do not need to be

changed by the programmer

• Only the offset part of a virtual address becomes

relevant

Each data byte (or instruction) is referred to only

by a 32-bit offset address

• The directives .data and .code mark the beginning

of the data and code segments. They are used only

for protection

1. .data is a read and write segment

2. .code is a read-only segment

3

Producing an Executable File

AssemblerSource

file
Object

file

linker
Executable

file

library

1. The assembler produces an object file from the as-

sembly language source

2. The object file contains machine language code with

some external and relocatable addresses that will be

resolved by the linker. Their values are undetermined

at that stage

3. The linker extract object modules (compiled proce-

dures) from a library and links them with the object

file to produce the executable file

4. The addresses in the executable file are all resolved

but they are still virtual addresses

4

Using Borland’s BCC32

• All these steps are performed with the command:

bcc32 -v hello.asm

• The bcc32 command calls TASM32 to assemble and

produce an object file

• It then calls ILINK32 to link this object file with

the C/C++ library functions and Win32 functions

used by the program to produce the executable file

hello.exe

• The -v option produces full debugging information

• See my home page for all the information you need

5

Names and Variables

• A name identifies either a:

1. Variable

2. Label

3. Constant

4. Keyword (assembler-reserved word

• The first character must be a letter or ’@’, ’ ’, ’$’ or
’?’. Subsequent characters can include digits

• A programmer chosen name must be different from
an assembler reserved word

Avoid using ’@’ as the first character since many keywords
start with it

• A variable is a symbolic name for a location in mem-
ory that was allocated by a data allocation directive

Count db 50; allocates 1 byte for variable Count

• A label is a name given to an instruction. It must be
followed by ’:’

main:
MOV EAX, 5
XOR EAX, EBX
JUMP main

• When called from bcc32, the TASM32 assembler is case sensitive for user-

defined words, but case insensitive for the assembler reserved words

6

Integer, Character and String Constants

1. Integer constants are made of numerical digits with,
possibly, a sign and a suffix.

• −23 (negative integer, base 10 is default)

• 1101b (binary number)

• 1011 (decimal number)

• 0A7Ch (hexadecimal number)

• A7Ch (this is the name of a variable; an hexadec-
imal number must start with a decimal digit)

2. Character and string constants are any sequence of
characters enclosed either in single or double quota-
tion marks. Embedded quotes are permitted.

• ’A’

• ’ABC’

• ”Hello World!”

• ”123” (this is a string, not a number)

• ”This isn’t a test”

• ’Say ”Hello” to him’

7

Data Allocation Directives

• The DB (define byte) directive allocates storage for

one or more byte values

[variable name] DB initval [, initval]

Each initializer can be any constant.

Var1 DB 10, 32, 41 ;allocates 3 bytes

Var2 DB 0Ah, 20h, ’A’ ;same values as above

• A question mark (?) in the initializer leaves the initial

value of the variable undefined.

Var3 DB ? ;the initial value for Var3 is undefined

• Everything after the ’;’ is a comment

• A string is stored as a sequence of characters

StrVar1 DB "ABCD

StrVar2 DB ’A’, ’B’, ’C’, ’D’ ;same values as above

StrVar3 DB 41h, 42h, 43h, 44h ;same values again

8

Data Allocation Directives (Continued)

• The (offset) address of a variable is the address of
its first byte.

.data
Var1 DB "ABC"
Var2 DB "DEFG"

If the above data segment starts at address 0 then

1. Address of Var1 is 0

2. Address of ’A’ is 0

3. Address of ’B’ is 1

4. Address of C’ is 2

5. Address of Var2 is 3

6. . . . Address of ’G’ is 6

• DW (define word) allocates a sequence of words

Var3 DW 1234h, 5678 ;allocates 2 words

• Intel’s x86 are little endian processors: the lowest
order byte (of a word or double-word) is always stored
at the lowest address

• If Var3 (above) is located at address 0, then

1. Address: 0 1 2 3

2. Values: 34h 12h 78h 56h
9

Data Allocation Directives (Continued)

• DD (define double-word) allocates a sequence of double-
words

Var1 DD 12345678h ;allocates 1 double-word

If Var1 is located at address 0 then

1. Address: 0 1 2 3

2. Values: 78h 56h 34h 12h

• If a value fits into a byte, it’ll be stored in the lowest
order byte available

Var2 DW ’A’

The value will be stored as

1. Address: 0 1

2. Values: 41h 00h

• The DUP operator duplicates storage values

Var1 DB 100 DUP(?) ;allocate 100 uninitialized bytes

Var2 DB 3 DUP("Ho") ;allocates 6 bytes: "HoHoHo"

DUP can be nested

Var3 DB 2 DUP(’a’, 2 DUP(’b’)) ;allocates 6 bytes: ’abbabb’

• DUP must be used with data allocation directives only

10

Constants

• We can use the equal-sign (=) directive or the EQU

directive to give a name to a constant

Cst1 = 1; ;this is a constant

Cst2 EQU 2 ;also a constant

• The EQU and = directives are equivalent

• The assembler does not allocate storage to a con-
stant (in contrast with data allocation directives)

• It merely substitutes, at assembly time, the value
of the constant at each occurrence of the assigned
name

• A constant expression involves the standard opera-
tors used in HLLs: +, -, *, /. Ex: the constant
expression below is evaluated at assembly time and
given a name at assembly time

Cst3 = (-3 * 8) + 2

• A constant can be defined in terms of another con-
stant

Cst4 EQU (Cst3 + 2) / 2

11

Exercise #1

• Suppose that the following data segment starts at

address 0

.data

Var1 DW 1, 2

Var2 DW 6ABCh

Cst1 EQU 232

Var3 DB ’ABCD’

Find the address of

1. Variable Var1

2. Variable Var2

3. Variable Var3

4. Character ’C’

12

Data Transfer Instructions

• MOV Destination, Source → transfers the content of

the source operand to the destination operand. This

changes the content of Destination only. Also, both

operands must be of the same size

• An operand can be either direct or indirect

• Direct operands (this chapter) are either

1. Immediate (constant): called Imm

2. Register: called Reg

3. Memory variable (with displacement): called Mem

• Indirect operands are used for indirect addressing

• MOV restrictions

1. Source and destination cannot both be Mem

2. Destination operand cannot be Imm

3. EIP cannot be an operand

13

Data Transfer Instructions (Continued)

• The type of an operand is given by its size. Hence

both operands of MOV must be of the same type

• Type checking is done by the assembler

• The type assigned to a Mem operand is given by its

data allocation directive

• The type assigned to a Reg operand is given by its

register size

• An Imm source operand of MOV must fit into the size

of the destination operand

• Examples of MOV usage

MOV BH, 255 ;8-bit operands

MOV AL, 256 ;Error: constant too large

MOV BX, WordVar1 ;16-bit operands

MOV BX, ByteVar1 ;Error: size mismatch

MOV EDX, DoubleWordVar1 ;32-bit operands

MOV CX, BL ;Error: size mismatch

MOV Var1, Var2 ;Error: Mem-to-Mem

14

MOVZX: Move with Zero Extend

• MOVZX Destination, Source → moves the content of

the source operand into a destination of larger size.

High order part of Destination is filled with 0’s

• Imm operands are not allowed

• Destination type must be strictly larger than source

type

• Example

MOV BH, 80h ;BH = 80h

MOVZX AH, BH ;Illegal: size mismatch

MOVZX AX, BH ;AX = 0080h

MOVZX ECX, AX ;ECX = 00000080h

• Notice that if the signed value in the source operand

is negative, then MOVZX will not preserve the sign

MOV BH, 80h ;BH = 80h is negative

MOVZX AX, BH ;AX = 0080h is positive

15

MOVSX: Move with Sign Extend

• MOVSX Destination, Source → preserves the sign of

the source operand. High order part of Destination

is filled with the sign of Source

The sign extension of a negative number is . . . 111111

The sign extension of a positive number is . . . 000000

Example

MOV BH, 80h ;BH = 80h is negative

MOVSX AX, BH ;AX = FF80h is positive

;FFh is the sign extension of 80h

MOVSX BL, 7Ah ;BL = 7Ah is positive

MOVSX AX, BL ;AX = 007Ah is positive

;00h is the sign extension of 7Ah

• MOVSX preserves the signed value whereas MOVZX pre-

serves the unsigned value

• Imm operands are not allowed and destination type

must be strictly larger than source type

16

Data Transfer Instructions (Continued)

• We can add a displacement to a memory operand to
access a memory value without a name

.data

ArrB DB 10h, 20h

ArrW DW 1234h, 5678h

ArrB+1 points to the second byte of ArrB and ArrW+2

points to the third byte of ArrW

MOV AL, ArrB ;AL = 10h

MOV AL, ArrB+1 ;AL = 20h

MOV AX, ArrW+2 ;AX = 5678h

MOV AX, ArrW+1 ;AX = 7812h

;Little endian convention!

MOV AX, ArrW-2 ;AX = 2010h

;negative displacement allowed

• XCHG Destination, Source → swaps the contents of
Source and Destination. Operands must be Mem or
Reg, must have the same type, and cannot be both
Mem

• To exchange the content of two Mem operands

MOV AX, WordVar1
XCHG WordVar2, AX
MOV WordVar1, AX

17

Exercise #2

• Given the following data segment

.data

A DW 1234h, -1

B DD 55h, 66778899h

• Indicate if each of the following instructions is legal.

If it is, indicate the value, in hexadecimal, of the des-

tination operand immediately after the instruction is

executed (please verify your answers with a debug-

ger)

MOV EAX, A

MOV BX, A+1

MOV BX, A+2

MOV DX, A+4

MOV CX, B+1

MOV EDX, B+2

18

Arithmetic Instructions

• ADD Destination, Source → adds the source to the
destination

• SUB Destination, Source→ subtracts the source from
destination.

• Result of ADD or SUB is stored in Destination and
Source remains unchanged. Operands must have the
same type and cannot be both Mem

• Recall: for A - B, the CPU performs A + NEG(B)

• ADD and SUB affect all the status flags of the EFLAGS

register according to the result of the operation

ZF (zero flag) = 1 ! result is 0

SF (sign flag) = 1 ! MSB is 1

OF (overflow flag) = 1 ! signed overflow

CF (carry flag) = 1 ! unsigned overflow

1. Signed overflow: out-of-range signed value

2. Unsigned overflow: out-of-range unsigned value

19

More on Overflows

• Signed (unsigned) overflow occurs if and only if (iff)

the signed (unsigned) value of the result does not fit

into the destination.

This happens iff the signed (unsigned) interpreta-

tion of the result is erroneous. It is signaled by

OF = 1 (CF = 1)

• Both types of overflow occur independently and are

signaled separately by OF and CF

MOV AL, 0FFh

ADD AL, 1 ;AL=00h, OF=0, CF=1

MOV AL, 7Fh

ADD AL, 1 ;AL=80h, OF=1, CF=0

MOV AL, 80h

ADD AL, 80h ;AL=00h, OF=1, CF=1

Hence we can have either type of overflow or both

at once

20

Overflow Examples

MOV AX, 4000h
ADD AX, AX ;AX = 8000h

1. Unsigned Interpretation:
Ã unsigned result is correct, hence CF = 0

2. Signed Interpretation:
Ã we add two positive numbers: 4000h + 4000h
Ã and obtain a negative number (!)
Ã signed result is incorrect, hence OF = 1

MOV AX, 8000h
SUB AX, 0FFFFh ;AX = 8001h

1. Unsigned Interpretation:
Ã we subtract a larger magnitude (0FFFFh) from a smaller

magnitude (8000h)
Ã unsigned result is incorrect, hence CF = 1

2. Signed Interpretation:
Ã signed result is correct (0FFFFh = -1), hence OF = 0

MOV AH, 40h
SUB AH, 80h ;AX = C0h

1. Unsigned Interpretation:
Ã we subtract a larger magnitude (80h) from a smaller

magnitude (40h)
Ã unsigned result is incorrect, hence CF = 1

2. Signed Interpretation:
Ãwe subtract the negative number 80h (-128) from the positive

number 40h (64)
Ã and obtain a negative number (!)
Ã signed result is incorrect, hence OF = 1

21

Exercise #3

• For each of the following instructions, give the con-

tent (in hexadecimal) of the destination operand and

the CF and OF flags immediately after the execution of

the instruction (verify your answers with a debugger)

1. ADD AX, BX when

AX contains 8000h and

BX contains FFFFh

2. SUB AL, BL when

AL contains 00h and

BL contains 80h

3. ADD AH, BH when

AH contains 2Fh and

BH contains 52h

4. SUB AX, BX when

AX contains 0001h and

BX contains FFFFh

22

Arithmetic Instructions (Continued)

• INC Destination → adds 1 to a single Mem or Reg

operand

• DEC Destination → subtracts 1 from a single Mem or

Reg operand

• Both instructions affect all status flags, except CF.

Ex: if CF = OF = 0 initially, then

MOV BH, 0FFh ; CF=0, OF=0

INC BH ;BH=00h, CF=0, OF=0

MOV BH, 7Fh ; CF=0, OF=0

INC BH ;BH=80h, CF=0, OF=1

• NEG Destination →performs the two’s complement of

its single Mem or Reg operand

CF = 0 ! the result is 0

OF = 1 ! there is a signed overflow

MOV AX, -5

NEG AX ;CF=1, OF=0

MOV AX, 8000h

NEG AX ;CF=1, OF=1 signed overflow!

23

Input/Output on the Win32 Console

• Our programs will communicate with the user via the

Win32 concole (the MS-DOS box)

1. Input is done on the keyboard

2. Output is done on the screen

• Modern OS like Windows forbids user programs to

interact directly with I/O hardware

User programs can only perform I/O operations via

system calls

• For simplicity, our programs will perform I/O opera-

tions by using macros that are provided in Cs266.inc

file

1. These macros call C library functions like printf()

which, in turn, call the Win32 API

2. Hence, these I/O operations will be slow but sim-

ple to use and easy to migrate to another OS

• We will examine the mechanisms involved in I/O op-

erations later in the course
24

Character Output Macro

• PUTCH Source → prints on the screen the character of
the operand’s ASCII code. Where Source must be
a 32-bit operand, that is either Imm, Reg32 or Mem32.
The cursor will advance one position after printing
the character

.data

Wrd DW 41h

Drd DD 61h

.code

PUTCH Wrd ;error: 16 bit operand

PUTCH Drd ;’a’ is written on screen

PUTCH ’b’ ;’b’ is written on screen

MOV EAX, ’c’

PUTCH EAX ;’c’ is written on screen

PUTCH AX ;error: 16-bit operand

• PUTCH macro calls the putchar() function from the C
library. Hence

The number 10 = 0Ah will direct the cursor to the
start of the next line (the newline character in C).
So the <CR> and <LF> functions are both performed
on the screen

PUTCH 10 ;moves the cursor to the

;start of the next line

25

String Output and Integer Output Macros

• PUTSTR Source → prints a string. Where Source must
be a Mem operand

• PUTSTR calls the C library’s printf("%s",). Hence

1. The number 10 = 0Ah will move the cursor to the start of
the next line

2. The string must be a null terminating string. The last
character must have ASCII code 0h

.data
Msg DB "hello", 0Ah, "world", 0h

.code
PUTSTR Msg ;prints ’hello’ on one line, and

;prints ’world on the next line

• PUTINT Source→ prints the signed value of an integer.
Where Source must be a Imm, Reg32 or Mem32 operand

.data

Wrd DW 243

Drd DD -266

.code

PUTINT Wrd ;error: 16 bit operand

PUTINT Drd ;-266 is written on screen

PUTINT -1 ;-1 is written on screen

MOV EAX, 0FFFFFFFFh

PUTINT EAX ;-1 is written on screen

PUTINT AX ;error: 16-bit operand

26

Character Input Macro

• GETCH → reads one or more characters on the key-

board

• This macro calls C library’s getchar(). So it uses a

memory buffer called the input buffer. Upon execu-

tion of GETCH, the input buffer is first examined

• If the buffer is empty, then GETCH waits for the user

to enter an input line (a sequence of char ended by

<CR>)

1. Each character that the user enters (at the key-

board) is copied into the buffer

2. When the user enters <CR>: the cursor moves to

the next line, the value 0Ah is stored in the buffer

and the control is passed to the instruction fol-

lowing GETCH

3. The ASCII code of the first character entered on

the keyboard will be stored in AL. The remaining

bits of EAX are filled with 0’s

MOV EAX, -1

GETCH Drd ;EAX = 41h

;if the user first hits ’A’

27

Character Input Macro (Continued)

• Ex: Suppose that the buffer is initially empty and,

upon execution of GETCH, the user enters "hello"+<CR>

on the keyboard. Then, when the control returns

to the instruction following GETCH, EAX contains 068h

(=’h’) and the input buffer looks like this

like this:

‘l’‘h’ ‘e’ ‘l’ ‘o’ 0Ah

Pointer to

next char

Pointer to

last char

• If the buffer is not empty when GETCH is executed,

then EAX will be loaded with the ASCII code of the

next character in the buffer and the pointer to the

next character will increase by one

• The buffer is empty only when the pointer to the

next character points beyond the last character (i.e.

0Ah)

• The user is prompted only when the buffer is empty

28

Character Input Macro (Example)

.386

.model Flat
include Cs266.inc
.code

main:
PUTCH ’?’
PUTCH 10
GETCH
PUTCH EAX
GETCH
PUTCH EAX
GETCH
PUTCH EAX
Ret

end

• Try to understand this program: It first prints
"?"

and moves the cursor to the next line awaiting user
input

• When the user enters "abcdef"+<CR>, the program dis-
plays (before exiting)
abc

• But if, instead, the user enters "a"+<CR>, the program
displays
a

and the cursor moves to the next line awaiting user
input. If the user then enters "bcdef"+<CR>, the pro-
gram prints on the next line (before exiting)
b

29

Character Input Macro (Example)

.386

.model Flat

include Cs266.inc

.data

Msg1 DB "Enter a lower case letter:", 0

Msg2 DB ’In upper case it is:’

Char DB ?, 0

.code

main:

PUTSTR Msg1

GETCH ;letter in EAX and goto next line

SUB AL, 20h ;converts to upper case letter

MOV Char, AL

PUTSTR Msg2

Ret

end

30

