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Why clustering?

A cluster is a group of related objects

In biological nets, a group of “related” genes/proteins

Application in PPl nets:
Protein function prediction

Protein complex identification

Are you familiar with Gene Ontology?



The Problem

Clustering:

Group elements into subsets based on similarity between
pairs of elements

Requirements:
Elements in the same cluster are highly similar to each other

Elements in different clusters have low similarity to each
other

Challenges:
Large sets of data

Inaccurate and noisy measurements
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Clustering
K

o1 Data clustering (Lecture 6) vs.  Graph clustering
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Graph clustering

Overlapping terminology:

Clustering algorithm for graphs =

“Community detection” algorithm for networks

Community structure in networks =

Cluster structure in graphs

Partitioning vs. clustering
Overlap?



Graph clustering
S

1 Decompose a network into subnetworks based on
some topological properties

0 Usually we look for dense subnetworks




Graph clustering
T oWhe

© Protein complexes in a PPl network
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E.g., Nuclear Complexes
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Graph clustering

Algorithms:
Exact: have proven solution quality and time complexity

Approximate: heuristics are used to make them efficient

Example algorithms:
Highly connected subgraphs (HCS)
Restricted neighborhood search clustering (RNSC)
Molecular Complex Detection (MCODE)
Markov Cluster Algorithm (MCL)

.. efc



Hierarchical, k-means... clustering

10

Of course, you can always cluster data using these
methods and an appropriate topological distance
measure

Shortest path distances
Many ties
Czekanowski-Dice distance

Assigns the maximum distance value to two nodes having no
common interactors

Assigns zero value to those nodes interacting with exactly the
same set of neighbors

Form clusters of nodes sharing a high percentage of edges
GDV-similarity
Do they satisfy all of the distance metric rules?



Highly connected subgraphs (HCS)
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Definitions:

HCS - a subgraph with n nodes such that more than n/2 edges must be
removed in order to disconnect it

A cut in a graph - partition of vertices into two non-overlapping sets

A multiway cut - partition of vertices into several disjoint sets

The_cut-set - the set of edges whose end points are in different sets

Edges are said to be crossing the cut if they are in its cut-set

The size /weight of a cut - the number of edges crossing the cut

The HCS algorithm partitions the graph by finding the minimum
graph cut and by repeating the process recursively until highly
connected components (subgraphs) are found



Highly connected subgraphs (HCS)
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HCS algorithm:

Input: graph G
Does G satisfy a stopping criterion?
If yes: it is declared a “kernel”

Otherwise, G is partitioned into two subgraphs, separated by a
minimum weight edge cut

Recursively proceed on the two subgraphs
Output: list of kernels that are basis of possible clusters

E. Hartuv and R. Shamir. An algorithm for clustering cdna finger-
prints. Genomics, 66(3):249-256, 2000. A preliminary wversion ap-
peared in Proc. RECOMB '99, pp. 188-197.

E. Hartuv and R. Shamir. A clustering algorithm based on graph
connectivity. Information Processing Letters, 76(4-6):175-181, 2000.



Highly connected subgraphs (HCS)
N

Algorithm 1: FORM-KERNELS((G)
if V(G) ={v} then

| move v to the singleton set

end

else
if G is a kernel then
| output V(G)
end

end

else
(H, H) + MinWeight EdgeCut(G);
Form-Kernels(H );

Form-Kernels(H);

end




Highly connected subgraphs (HCS)
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Clusters satisfy two properties:

They are homogeneous, since the diameter of each cluster is at most 2 and
each cluster is at least half as dense as clique

They are well separated, since any non-trivial split by the algorithm happens
on subgraphs that are likely to be of diameter at least 3

Running time complexity of HCS algorithm:

Bounded by 2N f(n,m)

N is the number of clusters found (often N << n)

f(n,m) is time complexity of computing a minimum edge cut of G with n
nodes and m edges

The fastest deterministic min edge cut alg. for unweighted graphs has time
complexity O(nm); for weighted graphs it’s O(nm+nZ?log n)

More in survey chapter: N. Przulj, “Graph Theory Analysis of Protein-Protein Interactions,” a chapter in
“‘Knowledge Discovery in Proteomics,” edited by I. Jurisica and D. Wigle, CRC Press, 2005



Highly connected subgraphs (HCS)
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Several heuristics used to speed it up

E.g., removing low degree nodes

If an input graph has many low degree nodes (remember, bio nets have
power-law degree distributions), one iteration of the minimum edge cut
algorithm many only separate a low degree node from the rest of the
graph contributing to increased computational cost at a low informative
value in terms of clustering

After clustering is over, singletons can be “adopted” by clusters, say by
the cluster with which a singleton node has the most neighbors



HCS Algorithm Overview

o
o Highly Connected Subgraphs Algorithm

Uses graph theoretic techniques

1 Basic Idea

Uses similarity information to construct a similarity

graph
Groups elements that are highly connected with each

other
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HCS: Main Players

Similarity Graph
Nodes correspond to elements (genes)

Edges connect similar elements (those whose similarity value
is above some threshold)

.

Gene, similar to gene,
5 Gene, similar to gene,
Gene, similar to gene,

gene; gene, ~
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HCS: Main Players

1 Edge Connectivity

Minimum number of edges whose removal results in a
disconnected graph

gene, gene,
Must remove 3 edges to
< disconnect graph, thus has an
edge connectivity k(G) =3
gene, gene,
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HCS: Main Players

1 Edge Connectivity

Minimum number of edges whose removal results in a
disconnected graph

gene, gene,
Must remove 3 edges to
< disconnect graph, thus has an
edge connectivity k(G) =3
gene, gene,
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HCS: Main Players

1 Edge Connectivity

Minimum number of edges whose removal results in a
disconnected graph

gene, gene,
Must remove 3 edges to
< disconnect graph, thus has an
edge connectivity k(G) =3
gene, gene,
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HCS: Main Players

Highly Connected Subgraphs

Subgraphs whose edge connectivity exceeds half the

@

number of nodes

(D

gene,
.
Entire Graph
geneg 5 Nodes =8
Edge connectivity = 1
JIene, \ge_”ej geney Not HCS!
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HCS: Main Players

Highly Connected Subgraphs

Subgraphs whose edge connectivity exceeds half the
number of nodes

gene, geneg
Sub Graph
< Nodes =5
Edge connectivity = 3
gene, gene,

HCS!
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HCS: Main Players

]
1 Cut

A set of edges whose removal disconnects the graph

(D

gene, geneg
geneg
gene, \:T%E;D gene,
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HCS: Main Players
=

1 Minimum Cut

A cut with a minimum number of edges

(D

gene, geneg
geneg
gene, \:T%E;D gene,
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HCS: Main Players
=

1 Minimum Cut

A cut with a minimum number of edges

(D

gene, geneg
geneg
gene, \:T%E;D gene,
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HCS: Main Players
=

1 Minimum Cut

A cut with a minimum number of edges

gene, gey geneg

geneg
gene, ge@ gene,
ECS289A Modeling Gene
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HCS: Algorithm (by example)
=
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HCS: Algorithm (by example)
=

Highly Connected!

>, @ * \8

12 @
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HCS: Algorithm (by example)
=
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HCS: Algorithm (by example)
=
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HCS: Algorithm (by example)

4 6

Highly Connected!

Highly Connected!

10 7

9 8

ECSZ89A Mode

ing Gene

31 Regulation « HCS Clustering
Algorithm « Sophie Engle



HCS: Algorithm (by example)
=

Cluster 1

D@ |@ .

Cluster 2

Cluster 3

12 \]:D 10 7

ECSZB89AMOodeling Gene
32 Regulation « HCS Clustering
Algorithm « Sophie Engle




HCS: Algorithm

-4
HCS( G )
{
MINCUT( G ) = { Hy, .., H{ }
for each H,, 1 =1 1, t ]

{
if k( H ) >n + 2
return H;
else
HCS( H; )
}

ECS289A Modeling Gene
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HCS: Algorithm
N

MINCUT( G ) = { H,, .., H. )}

Find a minimum cut in
graph G. This returns a set
of subgraphs { H,, ..,
H, } resulting from the
removal of the cut set.

ECS289A Modeling Gene
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HCS: Algorithm

I
|_\
~
t+

for each H,, 1

For each subgraph...

ECS289A Modeling Gene
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HCS: Algorithm

1f k( H ) >n + 2

return H; If the subgraph is highly
connected, then return that
subgraph as a cluster.
(Note: k ( H, ) denotes

edge connectivity of graph
H,, n denotes number of
nodes)

ECS289A Modeling Gene
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HCS: Algorithm

—Otherwise, Tepeatthe
algorithm on the subgraph.
else (recursive function)

HCS( H, ) This continues until there

are no more subgraphs,

and all clusters have been
fAarinAd

" TECS289A Modeling Gene
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HCS: Algorithm

T -
2N x f£( n, m ) where N
IS the number of clusters
found,and £ ( n, m ) is
the time complexity of
computing a minimum cut in
a graph with n nodes and m

nf‘lﬂf\(‘
uuvu
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HCS: Algorithm

MINCUT ( G )

Deterministic for
Un-weighted Graph:
takes O (nm) steps
where n is the number
of nodes and m is the
number of edges
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HCS: Properties

Homogeneity

Each cluster has a diameter of at most 2

Distance is the minimum length path between two nodes

Determined by number of EDGES traveled between nodes

Diameter is the longest distance in the graph

Each cluster is at least half as dense as a clique

Cligue is a graph with maximum possible edge connectivity

Dist(a,d) =2
< Dist(a,e)=3
Diam(G) =4

-

_ clique
ECS289A Modeling Gene
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HCS: Properties

Separation
Any non-trivial split is unlikely to have diameter of two

Number of edges removed by each iteration is linear in the
size of the underlying subgraph
Compared to quadratic number of edges within final clusters
Indicates separation unless sizes are small

Does not imply number of edges removed overall

ECS289A Modeling Gene
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HCS: Improvements
=

12 11
N
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HCS: Improvements
-

12 1
N
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HCS: Improvements
-

12 11
N
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HCS: Improvements

lterated HCS

Sometimes there are multiple minimum cuts to choose
from

Some cuts may create “singletons” or nodes that become
disconnected from the rest of the graph
Performs several iterations of HCS until no new cluster is
found (to find best final clusters)

Theoretically adds another O(n) factor to running time, but
typically only needs 1 — 5 more iterations

ECS289A Modeling Gene
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HCS: Improvements

Remove low degree nodes first
If node has low degree, likely will just be separated
from rest of graph
Calculating separation for those nodes is expensive

Removal helps eliminate unnecessary iterations and
significantly reduces running time

ECS289A Modeling Gene
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HCS Conclusion

Performance

With improvements, can handle problems with up to
thousands of elements in reasonable computing time

Generates clusters with high homogeneity and
separation

More robust (responds better when noise is introduced)
than other approaches based on connectivity

ECS289A Modeling Gene
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ldentify connected subgraphs

48

The network of protein interactions is typically presented as an undirected graph
with proteins as nodes and protein interactions as undirected edges.

Aim: identify highly connected subgraphs (clusters) that have more interactions
within themselves and fewer with the rest of the graph.

A fully connected subgraph, or cligue, that is not a part of any other clique is an

example of such a cluster. 5
m

° D)

In general, clusters need not to be fully connected.
Measure density of connections by

where n is the number of proteins in the cluster
and m is the number of interactions between them.



Ildentify all fully connected subgraphs (cliques)

Generally, finding all cliques of a graph is an NP-hard problem.
Because the protein interaction graph is sofar very sparse (the number of interactions
(edges) is similar to the number of proteins (nodes), this can be done quickly.

To find cliques of size n one needs to enumerate only the cliques of size n-1.

The search for cliques starts with n = 4, pick all (known) pairs of edges (6500 x 6500
protein interactions) successively.

For every pair A-B and C-D check whether there are edges between A and C, A and
D, B and C, and B and D. If these edges are present, ABCD is a clique.

For every clique identified, ABCD, pick all known proteins successively.
For every picked protein E, if all of the interactions E-A, E-B, E-C, and E-D are known,
then ABCDE is a clique with size 5.

Continue forn =6, 7, ... The largest cligue found in the protein-interaction network
has size 14.



Ildentify all fully connected subgraphs (cliques)

50

These results include, however, many redundant cliques.
For example, the cliqgue with size 14 contains 14 cliques with size 13.

To find all nonredundant subgraphs, mark all proteins comprising the clique of size
14, and out of all subgraphs of size 13 pick those that have at least one protein
other than marked.

After all redundant cliques of size 13 are removed, proceed to remove redundant
twelves etc.



@il

Monte Carlo Simulation

Use MC to find a tight subgraph of a predetermined number of nodes M.

At time t = 0, a random set of M nodes is selected.
For each pair of nodes I,] from this set, the shortest path L; between i and j on the
graph is calculated.
Denote the sum of all shortest paths L; from this set as L,,.
At every time step one of M nodes is picked at random, and one node is picked at
random out of all its neighbors.
b
exp T

The new sum of all shortest paths, L,, is calculated if the original node were to be
replaced by this neighbor.
If L, < L,, accept replacement with probability 1.
If L, > L,, accept replacement with probability

where T is the effective temperature.
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Monte Carlo Simulation

Every tenth time step an attempt is made to replace one of the nodes from
the current set with a node that has no edges to the current set to avoid
getting caught in an isolated disconnected subgraph.

This process is repeated

(i) until the original set converges to a complete subgraph, or

(ii) for a predetermined number of steps,

after which the tightest subgraph (the subgraph corresponding to the
smallest L) is recorded.

The recorded clusters are merged and redundant clusters are removed.



UpTtimdadl temperarure in IMC
simulation

53

For every cluster size there is an
optimal temperature that gives the
fastest convergence to the tightest

subgraph.
150000 | , | | Time to find a clique with size 7 in MC steps
oo per site as a function of temperature T.
T The region with optimal temperature is
100000 | : ! shown in Inset.
0 | The required time increases sharply as the
= | ‘ . temperature goes to 0, but has a relatively
S0000 U e wide plateau in the region 3< T < 7.
Simulations suggest that the choice of
. W temperature T ~M would be safe for any

0 20 40 60 80 100 cluster size M.
Temperature



Merging Overlapping Clusters

A simple statistical test shows that nodes which have only one link to a cluster are
statistically insignificant. Clean such statistically insignificant members first.

Then merge overlapping clusters:

For every cluster A find all clusters A, that overlap with this cluster by at least one
protein.

For every such found cluster calculate Q value of a possible merged cluster

A, U A, . Record cluster A,..(i) which gives the highest Q value if merged with A,

After the best match is found for every cluster, every cluster A, is replaced by a
merged cluster A, U A, (i) unless A; U A, (i) is below a certain threshold value
for Q.

This process continues until there are no more overlapping clusters or until
merging any of the remaining clusters witll make a cluster with Q value lower than

Qc.



Modularity and Community Detection in PPl networks

_
-1 Background.

1 Network module definition.

o Algorithm for identifying modules in network.



Biological Networks

Biological Systems

Made of many non-identical elements
connected by diverse interactions.

—

—1

Biological Networks

Biological networks as framework for the study of biological systems



Protein Interaction Network

Links: physical interactions

Nodes: proteins
(Jeong et al.

2001)

Paiek



Metabolic Network

Nodes: chemicals (substrates)
Links: chemistry reactions

(Ravasz et al., 2002)




Biological System are Modular

There is increasing evidence that the cell system is composed of
modules

A “module” in a biological system is a discrete unit whose function is
separable from those of other modules

Modules defined based on functional criteria reflect the critical level of
biological organization (Hartwell, et al.)

A modular system can reuse existing, well-tested modules

Functional modules will be reflect in the topological structures of
biological networks.

|dentifying functional modules and their relationship from biological
networks will help to the understanding of the organization, evolution
and interaction of the cellular systems they represent



Biological Modules

in Biological Networks
e e R e ——




Background: Identify Modules

from Biological Networks
—

O Most efforts focused on detecting highly connected clusters.
Ignored the peripheral proteins.

Modules with other topology are not identified.

Modules are isolated and no inter relationship is revealed.




Background: Identify Modules
from Biological Networks (continue)

Traditional clustering algorithms have been applied to protein
interaction networks (PIN) to find biological modules.
Need transforming PIN into weighted networks

®  Weight the protein interactions based on number of experiments that
support the interaction (Pereira-Leal et al).

®  Weight with shortest path length (River et al. and Arnau et al. ).
Drawbacks
m  Weights are artificial.

m  “tie in proximity” problem in hierarchical agglomerative clustering (HAC).



Background: Identify Modules
from Biological Networks (continue)

Radicchi et al. (PNAS, 2004) proposed two new
definitions of module in network.

For a sub-graph VcG, the degree definition of
vertex i€V in a undirected graph

V)=2A, KTV =3A,

jeVv
A,j equql to 1 if i and | are directly connected; it is equal

to zero otherwise.
ki”(\/) >k™(V) VieV

k'n kout
Weak definition of Module Zv: (V)>Z V)

Strong definition of Module



Background: Identify Modules

from Biological Networks (continue)
_

o1 Two module definitions do not follow the intuitive concept
of module exactly.




Degree of Subgraph

Given a graph G, let S be a subgraph of G (Sc G).

The adjacent matrix of sub-graph S and its neighbors N can be given as:

B {1 If vertices i and j connected , and either i or j belongsto S
i

|0 otherwise
Indegree of S, Ind(S):
ind(S) = > S;6(, j)
i
Where o(1, J)is 1 if both vertex i and vertex | are in sub-graph S and O

otherwise.

Outdegree of S, Outd(S):
outd (S) =D _S;A(i, j)
i j

Where A(i,j)is 1 if only one of vertex i and vertex | belong to sub-graph S and

O otherwise.



Degree of Subgraph: Example

tnd(2) 7
Outd(2)=4

Ind(1) =16 |
Outd(1)=5 |\

Ind(3) =8
/ Outd(3)=5



Modularity

The modularity M of a sub-graph S in a given graph
G is defined as the ratio of its indegree, ind(S), and
outdegree, outd(S):
_Ind(S)
outd (S)




New Network Module Definition

N
o1 A subgraph Sc G is a module if M>1.

\ Ind(2) =7
' Outd(2)=4
/M=1.75

Ind(1) =16 |
Outd(1)=5 \
M=3.2

/Ind(3) =8
/ outd(3)=5



Comparison to Radicchi’s Module
Defintions

o1 This sample network is a Strong module, but is not a module by this new
definition based on indegree vs outdegree criteria




Agglomerative Algorithm for
Ildentifying Network Modules

Initialization:
each vertex is a
singleton sub-graph

No
»<Still have edges? ( Stop )
Yes

Present a edge
Is edge inside
ub-graph?

Merging two sub-graphs

Flow chart of the agglomerative algorithm

Add the edge




The Order of Merging

Edge Betweenness (Girvan-

Newman, 2002)
Defined as the number of I:J//C@
shortest paths between dall
pairs of vertices that run \
through it.

Betweenness = 20
Edges between modules have
higher betweenness values.



The Order of Merging (continue)

Gradually deleting the edge with the highest
betweenness will generate an order of edges.

Edges between modules will be deleted earlier.

Edges inside modules will be deleted later.

Reverse the deletion order of edges and use it
as the merging order.



When Merging Occurs?
N

1 Between two non-modules
1 Between a non-module and a module

1 Not between two modules



Testing Data Set

Yeast Core Protein Interaction Network (PIN).

The yeast core PIN from Database of Interacting Proteins
(DIP) (version ScereCR20041003).

Total: 2609 proteins; 6355 links.

Large component: 2440 proteins, 6401 interactions.



86 Modules Obtained from
DIP Yeast core PIN

Highly Connected



Validation of modules

Annotated each protein with the Gene Ontology™ (GO) terms from the
Saccharomyces Genome Database (SGD) (Cherry et al. 1998;
Balakrishna et al)

Quantified the co-occurrence of GO terms using the hypergeometric
distribution analysis supported by the Gene Ontology Term Finder of
SGD(Balakrishna et al)

The results show that each module has statistically significant co-
occurrence of bioprocess GO categories



Validation of modules

Modules with 100% GO frequency

Module # GOID GO_term Frequency Genome Frequency Probability
134 45851 pH reduction 14 out of 14 genes, 100% 21 out of 7274 2.79E-36
140 6402 mMRNA catabolism 14 out of 14 genes, 100% 55 out of 7274 1.99E-30
23 6267 pre-replicative complex formation and maintenance 7 out of 7 genes, 100% 13 out of 7272 5.83E-20

SRP-dependent cotranslational protein-membrane
99 6617 targeting, signal sequence recognition 6 out of 6 genes, 100% 7 out of 7274 7.94E-19
109 6207 'de novo' pyrimidine base biosynthesis 5 out of 5 genes, 100% 5 out of 7274 1.53E-16
54 42147 retrograde transport, endosome to Golgi 5 out of 5 genes, 100% 10 out of 7272 4.91E-15
double-strand break repair via nonhomologous end-
108 6303 joining 5 out of 5 genes, 100% 19 out of 7274 1.21E-13
96 96 sulfur amino acid metabolism 5 out of 5 genes, 100% 31 out of 7274 1.40E-12
55 6896 Golgi to vacuole transport 4 out of 4 genes, 100% 18 out of 7272 3.75E-11
84 6109 regulation of carbohydrate metabolism 4 out of 4 genes, 100% 26 out of 7274 1.63E-10




Validation of modules

Most significant GO term in top 10 largest modules

Module # Module Size GOID GO term Frequency Genome Frequency Probability
202 201 6913 nucleocytoplasmic transport 62 out of 201 genes, 30.8% 105 out of 7274 5.48E-63
199 111 30163 protein catabolism 46 out of 111 genes, 41.4% 175 out of 7274 2.85E-44
193 93 16071 MRNA metabolism 58 out of 93 genes, 62.3% 184 out of 7274 4.69E-68
189 76 7028 cytoplasm organization and biogenesis 56 out of 76 genes, 73.6% 250 out of 7274 5.81E-65

actin cytoskeleton organization and
187 59 30036 biogenesis 31 out of 59 genes, 52.5% 101 out of 7274 9.93E-42
transcription from RNA polymerase Il
182 50 6366 promoter 34 out of 50 genes, 68% 270 out of 7274 6.35E-37
185 45 16573 histone acetylation 17 out of 45 genes, 37.7% 28 out of 7274 8.90E-30
188 45 6364 rRNA processing 34 out of 45 genes, 75.5% 175 out of 7274 7.18E-46
175 44 48193 Golgi vesicle transport 36 out of 44 genes, 81.8% 137 out of 7274 1.20E-54
194 42 6338 chromatin remodeling 18 out of 42 genes, 42.8% 128 out of 7274 6.18E-21




Validation of modules

1 Comparison with module definitions of Radicchi et al.

o Running the agglomerative algorithm based on different definitions

Average lowest P value (- Number of Modules ’9';

log10) (larger than 3) %

our 16.77497 86 -
Weak 12.28661 157 %
Strong 13.5531 33 g

Our Weak Strong




Validation of modules
N 5

—— Weak —=—our Strong

0.35

0.3
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Validation of modules
=

1 P values of modules obtained based our definition plot against P values of
the corresponding weak modules (line is y=x).

P value (-log10) of corresponding weak modules

P value (-log10) of our modules




Constructing the Network of

Modules

Hssembling the 86 MoNet
modules to form an
interconnected network of
modules.

For each adjacent module pair,
the edge that is deleted last

by the G-N algorithm was
selected from all the edges that
connect two modules to
represent the link between two
modules.




A Section of Module Network of 30
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Conclusions

Provide a framework for decomposing the protein interaction network into
functional modules

The modules obtained appear to be biological functional modules based on
clustering of Gene Ontology terms

The network of modules provides a plausible way to understanding the
interactions between these functional modules

With the increasing amounts of protein interaction data available, our
approach will help construct a more complete view of interconnected functional
modules to better understand the organization of the whole cellular system



Limitation of Global Algorithms

r B _|1
11 Biological networks 435 complex and | f.'i%;;::'}:;--a.\_pm |
protein metabolism &—— g, ‘_:}{_-’-'?h' Rlbpsjume )
. I te maﬁ*’ g |ogene5|sugs:em ly
are Incomp e . Ckaz_ CdgB8 & /o NopTp /@ 9
i | RPg?™ Tif :
o
ckb1® c
-1 Each vertex can only ot

Protein phosphatase d RS2
type 2A complex (part) Hht S Y, Mdn1 =F
R irs &"}( DNA packaging,

i
L :
A r:,‘t:hmmatm assembly

belong to one module.

Keed g
/. ®Far Cdc10 chqtcoakinesis
Cdc24Pheromone response (septin ring)

(cellular fusion)



Local Optimization Algorithm

Initialization:
Create a sub-graph S with v
Create a neighbor set N with
adjacent vertices of v

L

A 4

Create a list to store new
adding vertices

Addition Step:
Add vertices in N that can increase
the modularity of 8 into S

Deletion Step:
Delete vertices in S that can
increase the modularity of S

Update neighbor set:
Add adjacent vertices of all new
added vertices to N

Yes

ave new vertices added to
the subgraph 5?7
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Example of Module Overlap
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Restricted neighborhood search clust. (RNSC)

RNSC algorithm - partitions the set of nodes in the network into
clusters by using a cost function to evaluate the partitioning

The algorithm starts with a random cluster assignment

It proceeds by reassigning nodes, so as to maximize the scores
of partitions

At the same time, the algorithm keeps a list of already
explored partitions to avoid their reprocessing

Finally, the clusters are filtered based on their size, density and
functional homogeneity

A. D. King, N. Przulj and I. Jurisica, “Protein complex prediction via cost-based clustering,”
Bioinformatics, 20(17): 3013-3020, 2004.
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Restricted neighborhood search clust. (RNSC)

A cost function to evaluate the partitioning:

Consider node v in G and clustering C of G
a, is the number of “bad connections” incident with v

A bad connection incident to v is an edge that exist between v and a
node in a different cluster from that where v is, or one that does not
exist between v and node v in the same cluster as v

The cost function is then:

C.(CC) =12 5,00,

There are other cost functions, too

Goal of each cost function: clustering in which the nodes of
a cluster are all connected to each other and there are no
other connections

A. D. King, N. Przulj and I. Jurisica, “Protein complex prediction via cost-based clustering,”
Bioinformatics, 20(17): 3013-3020, 2004.
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Molecular Complex Detection (MCODE)
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Step 1: node weighting
Based on the core clustering coefficient
Clustering coefficient of a node: the density of its neighborhood
A graph is called a “k-core” if the minimal degree in it is k

“Core clustering coefficient” of a node: the density of the k-core of
its immediate neighborhood

It increases the weights of heavily interconnected graph regions while
giving small weights to the less connected vertices, which are
abundant in the scale-free networks

Step 2: the algorithm traverses the weighted graph in a greedy fashion
to isolate densely connected regions

Step 3: The post-processing step filters or adds proteins based on
connectivity criteria

Implementation available as a Cytoscape plug-in

-- a Cytoscape plugin


http://baderlab.org/Software/MCODE
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Find neighbors of Ptil
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Find highest k-core (8-core)

Ptal

Ptil
Ref2

Papl
4

Mpel

Fipl

Yth Cft2

Cftl
Pfs2

Removes low degree nodes
in power-law networks



Find graph density

Ptal

Ptil

Ref2
Papl
4
Mpel
Yth Cft2 Fipl

Cftl

Pfs2

Density= Number edges =44/55 =0.8

Number possible edges
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Calculate score for Ptil

Ptal

Ptil
Ref2

Papl
/P

Mpel

Yth Cft2 Fipl

Cftl
Pfs2

Score = highest k-core * density =8 * 0.8 = 6.4 = ‘

Score

High

Low



Repeat for entire network
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Find dense regions:

-Pick highest scoring vertex
-’Paint’ outwards until threshold score reached
(% score from

seed node) '
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Markov Cluster Algorithm (MCL

“ -
Network flow

Imagine a graph as a network of m’rerconnec’red plpes

Suppose water gets into one or more vertices (sources) from
the outside, and can exit the network at certain other vertices
(sinks)

Then, it will spread in the pipes and reach other nodes, until
it exits at sinks

The capacities of the edges (i.e., how much the pipe can

carry per unit time) and the input at the sources determine
the amount of flow along every edge (i.e., how much each
pipe actually carries) and the amount exiting at each sink

S. M. van Dongen. Graph Clustering by Flow Simulation. PhD thesis,
University of Utrecht, The Netherlands, 2000.



Markov Cluster Algorithm (MCL)
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Graph power

The k™ power of a graph G: a graph with the same set
of vertices as G and an edge between two vertices iff
there is a path of length at most k between them

The number of paths of length k between any two
nodes can be calculated by raising adjacency matrix of
G to the exponent k

Then, G’s k™ power is defined as the graph whose
adjacency matrix is given by the sum of the first k
powers of the adjacency matrix:
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Markov Cluster Algorithm (MCL)



Markov Cluster Algorithm (MCL)
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The MCL algorithm simulates flow on a graph and computes its
successive powers to increase the contrast between regions with
high flow and regions with a low flow

This process can be shown to converge towards a partition of
the graph into high-flow regions separated by regions of no
flow

Very efficient for PPl networks

Brohee S, van Helden J: Evaluation of clustering algorithms for protein-
protein interaction networks. BMC bioinformatics 2006, 7:488.

Vlasblom, J, Wodak, SJ: Markov clustering versus affinity propagation
for the partitioning of protein interaction graphs, BMC Bioinformatics

2009, 10:99.



Markov Cluster Algorithm (MCL)

Flow between different dense regions that are sparsely connected eventually
“evaporates,” showing cluster structure present in the input graph.



Correctness of methods

Clustering is used for making predictions:

E.g., protein function, involvement in disease, interaction
prediction

Other methods are used for classifying the data
(have disease or not) and making predictions

Have to evaluate the correctness of the predictions
made by the approach

Commonly used method for this is ROC Curves

106



Correctness of methods

Definitions (e.g., for PPlIs):
0 A frue positive (TP) interaction:

an interaction exists in the cell and is discovered by an
experiment (biological or computational).

7 A true negative (TN) interaction:

an interaction does not exist and is not discovered by an
experiment.

1 A false positive (FP) interaction:

an interaction does not exist in the cell, but is discovered by an
experiment.

1 A false negative (FN) interaction:

an interaction exists in the cell, but is not discovered by an

experiment.
107



If TP stands for true positives, FP for false positives, TN for true negatives, and
FN for false negatives, then:

Sensitivity = TP [/ (TP + FN)
Specificity = TN / (TN + FP)
Sensitivity measures the fraction of items out of all possible ones that ’rrulz exist

in the biological system that our method successfully identifies (fraction o
correctly classified existing items)

Specificity measures the fraction of the items out of all items that truly do not
exist in the biological sz's’rem for which our method correctly determines that they
do not exist (fraction o

correctly classified non-existing items) ROC curve
Thus, 1-Specificity measures the fraction of 100
. . . . a0 +
all non-existing items in the system that are N
incorrectly identified as existing 70 {
.@' 60
a0 4
=
$ a0
30 4
20 4
10 1
a t t t t
0 20 40 =] g0 100

1 - specificity



ROC Curve
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Receiver Operating Curves (ROC curves) provide a standard measure of
the ability of a test to correctly classify objects.

E.g., the biomedical field uses ROC curves extensively to assess the efficacy
of diagnostic tests in discriminating between healthy and diseased
individuals.

ROC curve is a graphical plot of the true positive rate, i.e., sensifivity, vs.
false positive rate, i.e., (I —specificity), for a binary classifier system as its
discrimination threshold is varied (see above for definitions).

It shows the tradeoff between sensitivity and specificity (any increase in
sensitivity will be accompanied by a decrease in specificity).

The closer the curve follows the left-hand border and then the top border of
the ROC space, the more accurate the test; the closer the curve comes to the
45-degree diagonal of the ROC space, the less accurate the test. The area
under the curve (AUC) is a measure of a test’s accuracy.



ROC curve

Example:
Embed nodes of a PPl network into 3-D Euclidean unit box

(use MDS — knowledge of MDS not required in this class, see reference in the footer,
if interested)

Like in GEQO, choose a radius r to determine node connectivity

Vary r between 0 and sqrt(3) (diagonal of the box)
r=0 makes a graph with no edges (TP=0, FP=0)
r=sqrt(3) makes a complete graph (all possible edges, FN=TN=0) .
For each r in [0, sqrt(3)]: 20l
measure TP, TN, FP, FN
compute sensitivity and 1- specificity o
draw the point an -
Set of these points is the ROC curve 201

10 1

ROC curve

100

a0 +

B0
50 4

sensitivity

0 t ; ; t
0 20 40 60 a0 100
1 - specificity

Note:
For r=0, sensitivity=0 and 1-specificity=0, since TP=0, FP=0 (no edges)
For r=sqrt(3), sensitivity=1 and 1-specificity=1 (or 100%), since FN=0, TN=0

D.J. Higham, M. Rasajski, N. Przulj, “Fitting a Geometric Graph to a Protein-Protein Interaction Network”,
110Bjoinformatics, 24(8), 1093-1099, 2008.



Precision and recall

111 . . . .
Information about true negatives is often not available

Precision - a measure of exactness

Recall - a measure of completeness

Precision = tp Sensitivity = TP / (TP + FN)
tp+fp
Recall = P Specificity = TN/ (TN + FP)
tp+ fn

E.g., given mnar we proauce n cancer gene predictions

Precision is the number of known cancer genes in our n predictions,
divided by n

Recall is the number of known cancer genes in our n predictions divided
by the total number of known cancer genes

F-score — measures test accuracy, weighted average of precission
and recall (in [0,1]):

recision - recall
F=2.2

precision + recall



Hypergeometric distribution

112
Probability distribution that describes the number of successes in a sequence

of n draws from a finite population of size N without replacement

For draws with replacement, use binomial distribution

drawn not drawn @ total
white| Kk m— Kk m (T) (N_T)
- . . —f
black n-k [N+k-n-mN-m P(X_k}_

()
total n N-n N n

N
m - the number of objects out of n objects with a given “function” (color)
n - number of draws from N (e.g., the size of a cluster)

k - the number of objects out of n objects that have the given function

- To get the enrichment p-value for a cluster of size n, sum over i=k,k+1,...,m

- Use hygecdf function in Matlab (but use 1-hygecdf(...)), since it computes probability
to get O to k elements of a given function




Network Topology — Biology

s Motivation A%

Genetic sequence research — valuable insights

Genes produce thousands of different proteins

Proteins interact in complex ways to perform a function

They do not act in isolation

Biological network research — at least as valuable insights
genetic sequence research

I [

> 0w S > z
A 2 2 Y ;E N .
¢

However, the field is still in its infancy:

Incomplete /noisy network data

Computational intractability of many graph theoretic problems

Defining the relationship between network topology and
biological function — one of the most important problems in
post-genomic era



Network Topology — Biology

Lethality and Centrality in PPI Networks (Jeong et
al., Nature, 2001)

This study found the phenotvpic consequence of singe gene deletion in veast is
affected by the topological position of it’s protein product in the PPI network.
This study was over a network of 1820 proteins and 2240 interactions - with a
power law distribution (and clearly sparse).

The power law implies that the network is tolerant to random errors, but is
intolerant to the removal of "hubs™ - the top degree-ranked nodes. When these
hubs were removed, the network diameter increased rapidly leaving a less well
connected network,

This studyv found that topologv influences error tolerence: less connected
nodes should be less essential than highly connected nodes. It also found that
highlv connected proteins have a central role in the network architecture and

are 3 times more likelv to be essential than proteins of lower degrees.




Network Topology — Biology

Specificity and Stability in Topology of PPI networks
(Maslov et al., Science, 2002)

This study made use of a veast PPI network of 3278 proteins and 4549 inter-
actions. This study explored the correlations in the connectivities of nodes by
caleulating the likelyhood, p(kqg, k1) that two proteins with degrees &y and &y
are connected to each other. This study found that:

e There is a tendancy of highly connected nodes to interact with low degree
nodes.

e There is a reduced likelvhood that a pair of hub nodes will interact with
each other.

e There is a tendancy of proteins with degree between 4 and 9 to interact
with each other (this seems to demonstrate that they belong to protein

complexes).



Network Topology — Biology

Specificity and Stability in Topology of PPI networks
(Maslov et al., Science, 2002)

During this study, the average connectivity, k1 of neighbours of a node was
calculated as a function of the degree of that node, k. This was used to find
that ki shows a gradual decline with respect to kg, i.e. degree correlation is
negative,

The observed spectrum of degrees of hub neighbours is consistent with the
existence of functional modules which are organised around individual hubs -
hubs tend not to be connected directly.

This may imply network robustness through the suppression of the propiga-
tion of attacks over a network: if one hub is damaged, it is unlikely to affect all
other hubs in the network. The reduced branching ratio around hubs provides
a certain degree of protection against attacks of these nodes.




Gene Essentiality and the Topology of PPI networks
(Coulomb et al., Proceedings of the Royal Society B,
2005)

a7 In this paper, the following mutations were studied in the context of PPI network
topology:

e Lethal: Single gene mutations which cause cell death.

e Synthetically Lethal: Combination of mutations in 2 genes causes cell
death.

e Viable: Cell survives gene mutation.

Thev found that the strong correlation of gene essentiality and cell robustness
in PPI networks was due to the use of PPI networks which had inherent biases
in them. These included:

¢ LEssential genes tend to be more studied than the viable genes - as such they
may have inflated degrees (or conversely, the viable ones have suppressed
degrees from being under-studied).

¢ The biotechnological biases previously discussed.

The study showed that the dispensibility of a gene is onlv weakly related to
it's degree, snggesting that network topology has little influence on essentiality &
robustness. More specifically, the average degree of essential and non-essential
cenes were 2.2 and 1.8 respectively - a difference factor of only 1.2. Similar
results were found when analysing sythetically lethal and non-essential genes.




Gene Essentiality and the Topology of PPI networks
(Coulomb et al., Proceedings of the Royal Society B,
2005)

The main conclusions of this study were:

A

Physiological consequences of gene deletions are only weakly related to gene
degrees in PPI networks.

. ky, the average degree of a node’s neighbours, does not vary significantly

between essential and non-essential genes, irrespective of their degree. This
suggests that the essentiality of a gene does not seem to be related to the
average degree of it’s neighbours.

: Clustering coefficients cannot be reliably associated with gene essentiality.

. The average distance separating query genes from their synthetically lethal

partners is similar to the average distance separating query genes from the
set of non-essential genes: the distribution of these distances was found to
be almost identical.

These conclusions are compatible with the hypothesis that the network

topology is not under evolutionary constraints, but is instead a consequence
of the construction process of the network. They are, however, at odds with the

previous two studies.




Functional Topology in PPI Networks

This was a study of a veast PPI network of 2401 proteins and 11000 interactions.
The network has a power law degree distribution.
Results of this study:

.

Viable proteins were found to have degrees half that of lethal ones... al-
though the interactions of the lethal genes tend to be studied more: they
may be proportionally over-represented compared to the viables in the
network.

Lethal proteins were found to be more frequent in the top 3% of nodes
(ranked by degree) compared to viable nodes

Lethals had a higher frequency in the group of proteins which were artic-
ulation points (AP’s) 2 and hubs than did synthetically lethal and viable

proteins.

It was found that viable proteins tend to be on alternate pathways; this
redundancy may explain why mutations of them were not lethal. This
idea is demonstrated in figure 5, which shows that even though the grey
node has been deleted. interactions still can take place through the other
two paths from the top node to the bottom node.

2 Articulation Points, or AP's are nodes, which if they are removed result in the disruption
of a network’s structure, i.e. part of the network becomes disconnected




Network Topology — Biology

Figure 5: Redundancy in PPI networks



Network Topology — Biology

e
Functional topology in PPI networks

e Distinct  functional classes of proteins (e.g.: transcription, DNA-repair,
metabolism, etc.) have different network properties, e.g. higher or lower
degree in the PPI network

e Highly connected subgraphs (subgraphs which are dense in edges) tend
to be protein complexes (i.e., groups of proteins which do a particular
function together when they bind)

e In conclusion, there is a structure-function relationship in PPI networks.



Protein function prediction

One of the major challenges in the post-genomic era:
Relationship between PPl network topology and biological function?
Methods for protein function prediction:

proteins that are closer in the PPl network are more likely to
have similar function
Majority-rule (Schwikowski et al., 2000)
n-neighborhood (Hishigaki et al., 2001)
1- and 2-neighborhood with different weights (Chua et al., 2006)
Global optimization strategies (Vazquez et al., 2003)
“Functional flow” (Nabieva et al., 2005)

Direct neighborhood Shared neighborhood

122



Protein function prediction

One of the major challenges in the post-genomic era:
Relationship between PPl network topology and biological function?
Methods for protein function prediction:

partition the network into clusters (i.e., functional
modules) and assign the entire cluster with a function

Detecting dense network regions:

MCODE (Bader and Hogue, 2003), HCS (Przulj et al., 2003); RNSC (King et al., 2004)...
Hierarchical clustering:

The key step: defining the similarity measure between protein pairs

E.g., the shortest path length (Arnau et al.2005) or Czekanowski-Dice distance (Brun et al., 2004)

123 123



Uncovering Biological Network Function via Graphlet Degree
Signatures: (Milenkovic. and Przulj Cancer Informatics, 2008)

e Biological function of a protein and its local network structure (as de-
scribed by graphlet degree vectors, a.k.a. “node signatures,” covered in
previous classes) are closely related.

¢ Proteins with topologically similar neighborhoods are clustered together
and the resulting clusters are statistically significantly enriched in:

— protein complexes

— biological function

— sub-cellular localization

— tissue expression (in human)

— involvement in (human) disease

e Used to predict function and new proteins involved in disease.




Disease-genes and drug-targets

-1 Emerging research field: understanding the networks
underlying human disease

Analyzing topological properties of disease genes in PPI
networks & identifying novel disease genes

Defining the relationship between disorders and disease
genes

tionship between drugs on
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Topological properties of disease genes

-1 Cancer genes: greater connectivity and centrality
(Jonsson and Bates, ‘06)
1 Only essential disease genes show higher connectivities

(Goh et al., ‘07)

-1 Disease genes have similar graphlet degree signatures in PPl networks
(Milenkovic and Przulj, ‘08)

Signatures of proteins belonging to the TP53 cluster
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Cancer gene identification
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Network neighbors of cancer genes also involved in cancer (Aragues et al., ‘08)

Do the genes that are involved in cancer have similar topological signatures without
necessarily being adjacent in the network? (Milenkovic et al., ‘10)

96% of signature-similar known cancer gene pairs not direct neighbors
Apply a series of clustering methods to proteins’ signature similarities

Hierarchical clustering (HIE)

K-medoids (KM)

K-nearest neighbors (KNN)

Signature-threshold based clustering (ST)

Analyze if the obtained clusters are statistically significantly enriched with known cancer
genes

Predict novel cancer gene candidates
Measure prediction accuracy of our approach
Validate predictions in the literature and biologically

Demonstrate superiority over other approaches (Aragues et al. ‘08)



The disease network (Goh et al., 2007)
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The challenge: many-to-many relationships

Global view from a higher level of cellular organization
The “disease phenome”: a systematic linkage of all genetic disorders
The “disease genome”: the complete list of disease genes

The “diseasome”, the combined set of all known associations between disorders and
disease genes.

Two projections of the diseasome:
The human disease network (HDN)
The disease gene network (DGN)
Both projections are far from being disconnected

Clustering of disorders and disease genes

Overlaying DGN with the human PPl network
Overlap of 290 interactions
Genes involved in the same disease tend to interact in the PPl network

Only essential disease genes are topologically and functionally central
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Drugs and drug targets

1 Druggable genome

©1 DrugBank
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Drugs and drug targets

The drug target network (Yildirim et al. 2007)
Two projections: “Drug network” & “Target-protein network”
The majority of drugs shared targets with other drugs
Industry trends: new drugs target already known targets
But, experimental drugs target more diverse set of proteins
Overlying target-protein network with human PPI network
262 drug targets present in the human PPl network
These targets have higher degrees, but are not essential proteins

Do drug targets correspond to disease genes?
Most drugs target disease-genes indirectly

However, cancer drugs directly target the actual cause of disease
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Circles = drugs, rectangles = target proteins, edge = the protein is a known target of the drug, size = degree.



Network alignment
2

1 Pathblast /Networkblast




Network alignment

IsoRank: 116 proteins GRAAL: 267 proteins H-GRAAL: 317 proteins
261 interactions 900 interactions 1,290 interactions



Network alignment
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Applications:
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Protein function prediction

Prediction of protein interactions

|dentification of the core interactome

|dentification of evolutionary conserved subgraphs

Construction of nhvloaenetic trees
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Sequence-based tree H-GRAAL's tree
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Uncovering components of pathways/networks underlying
certain biological processes

Experiments—> computational predictions =2 experiments

E.g., EDNRB-focused melanogenesis network

H. Ho, T. Milenkovic, et al. “Protein Interaction Network
Topology Uncovers Melanogenesis Regulatory
Network Components Within Functional Genomics
Datasets,” BMC Systems Biology, 2010.



Uncovering components of pathways/networks underlying

certain biological processes

m1 E.g., yeast proteasome network

1 Reveal the interconnectivity of the proteasome complex with

other protein complexes

o chromatin remadeling
-

1 tRNA aminoacylation A
= metabolism Q
- ‘/ ;

o transport

A translation

¥ DNA replication
o endocytosis

A protein folding




