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Why clustering? 
2 

 A cluster is a group of related objects 

 In biological nets, a group of “related” genes/proteins 

 

 Application in PPI nets:  

 Protein function prediction 

 Protein complex identification 

 

 Are you familiar with Gene Ontology?  
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The Problem 

 Clustering: 

 Group elements into subsets based on similarity between 
pairs of elements 

 Requirements: 

 Elements in the same cluster are highly similar to each other 

 Elements in different clusters have low similarity to each 
other 

 Challenges: 

 Large sets of data 

 Inaccurate and noisy measurements 



Clustering 
4 

 Data clustering (Lecture 6)    vs.  Graph clustering  



Graph clustering 
5 

Overlapping terminology: 

 
 Clustering algorithm for graphs = 

 “Community detection” algorithm for networks 

 

 Community structure in networks =  

 Cluster structure in graphs 

 

 Partitioning vs. clustering 

 Overlap?  



Graph clustering 
6 

 Decompose a network into subnetworks based on 

some topological properties 

 Usually we look for dense subnetworks 



Graph clustering 
7 
Why? 

 Protein complexes in a PPI network 



E.g., Nuclear Complexes 
8 



Graph clustering 
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Algorithms: 

 Exact: have proven solution quality and time complexity 

 Approximate: heuristics are used to make them efficient 

 

Example algorithms: 

 Highly connected subgraphs (HCS) 

 Restricted neighborhood search clustering (RNSC) 

 Molecular Complex Detection (MCODE) 

 Markov Cluster Algorithm (MCL) 

 … etc 

 



Hierarchical, k-means… clustering 
10 

 Of course, you can always cluster data using these 
methods and an appropriate topological distance 
measure 
 Shortest path distances 
 Many ties 

 Czekanowski-Dice distance 
 Assigns the maximum distance value to two nodes having no 

common interactors  

 Assigns zero value to those nodes interacting with exactly the 
same set of neighbors  

 Form clusters of nodes sharing a high percentage of edges 

 GDV-similarity 

 Do they satisfy all of the distance metric rules? 



Highly connected subgraphs (HCS) 
11 

 Definitions:  

 

 HCS - a subgraph with n nodes such that more than n/2 edges must be 
removed in order to disconnect it 

 A cut in a graph - partition of vertices into two non-overlapping sets 

 A multiway cut - partition of vertices into several disjoint sets 

 The cut-set - the set of edges whose end points are in different sets 

 Edges are said to be crossing the cut if they are in its cut-set 

 The size/weight of a cut - the number of edges crossing the cut  

 

 The HCS algorithm partitions the graph by finding the minimum 
graph cut and by repeating the process recursively until highly 
connected components (subgraphs) are found 



Highly connected subgraphs (HCS) 
12 

 HCS algorithm:  
 

 Input: graph G 

 Does G satisfy a stopping criterion? 

 If yes: it is declared a “kernel” 

 Otherwise, G is partitioned into two subgraphs, separated by a 
minimum weight edge cut 

 Recursively proceed on the two subgraphs 

 Output: list of kernels that are basis of possible clusters 



Highly connected subgraphs (HCS) 
13 



Highly connected subgraphs (HCS) 
14 

 Clusters satisfy two properties:  

 They are homogeneous, since the diameter of each cluster is at most 2 and 
each cluster is at least half as dense as clique  

 They are well separated, since any non-trivial split by the algorithm happens 
on subgraphs that are likely to be of diameter at least 3 

 

 Running time complexity of HCS algorithm: 

 Bounded by 2N f(n,m) 

 N is the number of clusters found (often N << n) 

 f(n,m) is time complexity of computing a minimum edge cut of G with n 
nodes and m edges 

 The fastest deterministic min edge cut alg. for unweighted graphs has time 
complexity O(nm); for weighted graphs it’s O(nm+n2log n) 

More in survey chapter: N. Przulj, “Graph Theory Analysis of Protein-Protein Interactions,” a chapter in  

“Knowledge Discovery in Proteomics,” edited by I. Jurisica and D. Wigle, CRC Press, 2005 



Highly connected subgraphs (HCS) 
15 

 Several heuristics used to speed it up 

 E.g., removing low degree nodes 

 If an input graph has many low degree nodes (remember, bio nets have 
power-law degree distributions), one iteration of the minimum edge cut 
algorithm many only separate a low degree node from the rest of the 
graph contributing to increased computational cost at a low informative 
value in terms of clustering 

 After clustering is over, singletons can be “adopted” by clusters, say by 
the cluster with which a singleton node has the most neighbors 
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HCS Algorithm Overview 

 Highly Connected Subgraphs Algorithm 

 Uses graph theoretic techniques 

 Basic Idea 

 Uses similarity information to construct a similarity 

graph 

 Groups elements that are highly connected with each 

other 
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HCS: Main Players 

 Similarity Graph 

 Nodes correspond to elements (genes) 

 Edges connect similar elements (those whose similarity value 

is above some threshold) 

gene1 

gene2 

gene3 

Gene1 similar to gene2 

Gene1 similar to gene3 

Gene2 similar to gene3 
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HCS: Main Players 

 Edge Connectivity 

 Minimum number of edges whose removal results in a 

disconnected graph 

Must remove 3 edges to 

disconnect graph, thus has an 

edge connectivity k(G) = 3 

gene1 

gene2 

gene4 

gene3 
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HCS: Main Players 

 Edge Connectivity 

 Minimum number of edges whose removal results in a 

disconnected graph 

Must remove 3 edges to 

disconnect graph, thus has an 

edge connectivity k(G) = 3 

gene1 

gene2 

gene4 

gene3 
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HCS: Main Players 

 Edge Connectivity 

 Minimum number of edges whose removal results in a 

disconnected graph 

Must remove 3 edges to 

disconnect graph, thus has an 

edge connectivity k(G) = 3 

gene1 

gene2 

gene4 

gene3 
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HCS: Main Players 

 Highly Connected Subgraphs 

 Subgraphs whose edge connectivity exceeds half the 

number of nodes 

gene1 

gene2 

gene4 

gene5 

gene3 gene6 

gene7 

gene8 

Entire Graph 

Nodes = 8 

Edge connectivity = 1 

Not HCS! 
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HCS: Main Players 

 Highly Connected Subgraphs 

 Subgraphs whose edge connectivity exceeds half the 

number of nodes 

gene1 

gene2 

gene4 

gene5 

gene3 gene6 

gene7 

gene8 

HCS! 

Sub Graph 

Nodes = 5 

Edge connectivity = 3 
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HCS: Main Players 

 Cut 

 A set of edges whose removal disconnects the graph 

gene1 

gene2 

gene7 gene4 

gene5 

gene3 gene6 

gene8 
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HCS: Main Players 

 Minimum Cut 

 A cut with a minimum number of edges 

gene1 

gene2 

gene7 gene4 

gene3 gene6 

gene5 gene8 
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HCS: Main Players 

 Minimum Cut 

 A cut with a minimum number of edges 

gene1 

gene2 

gene3 gene6 

gene5 gene8 

gene7 gene4 
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HCS: Main Players 

 Minimum Cut 

 A cut with a minimum number of edges 

gene1 

gene2 

gene3 

gene5 gene8 

gene4 

gene6 

gene7 
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HCS: Algorithm (by example) 

  

2 4 

10 11 

5 

1 

12 

3 

7 

6 

9 8 find and remove a minimum cut 
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HCS: Algorithm (by example) 

  

Highly Connected! 

2 4 

10 11 

5 

1 

12 

3 

7 

6 

9 8 

are the resulting  

subgraphs highly connected? 
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HCS: Algorithm (by example) 

  

2 4 

10 11 

5 

1 

12 

3 

7 

6 

9 8 

repeat process on non-highly 

connected subgraphs 

Cluster 1 
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HCS: Algorithm (by example) 

  

2 4 

10 11 

5 

1 

12 

3 

7 

6 

9 8 find and remove a minimum cut 

Cluster 1 
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HCS: Algorithm (by example) 

  

Highly Connected! 

2 4 

Highly Connected! 

10 11 

5 

1 

12 

3 

7 

6 

9 8 

are the resulting  

subgraphs highly connected? 

Cluster 1 
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HCS: Algorithm (by example) 

  

Cluster 2 

2 4 

Cluster 3 

10 11 

5 

1 

12 

3 

7 

6 

9 8 resulting clusters 

Cluster 1 
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HCS: Algorithm 

HCS( G )  

{ 

 MINCUT( G ) = { H1, … , Ht } 

 for each Hi, i = [ 1, t ]  

  { 

   if k( Hi ) > n ÷ 2 

    return Hi 

   else 

    HCS( Hi ) 

 } 

} 
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HCS: Algorithm 

HCS( G )  

{ 

 MINCUT( G ) = { H1, … , Ht } 

 for each Hi, i = [ 1, t ]  

  { 

   if k( Hi ) > n ÷ 2 

    return Hi 

   else 

    HCS( Hi ) 

 } 

} 

Find a minimum cut in 
graph G.  This returns a set 

of subgraphs { H1, … , 

Ht } resulting from the 

removal of the cut set. 
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HCS: Algorithm 

HCS( G )  

{ 

 MINCUT( G ) = { H1, … , Ht } 

 for each Hi, i = [ 1, t ]  

   { 

   if k( Hi ) > n ÷ 2 

    return Hi 

   else 

    HCS( Hi ) 

 } 

} 

For each subgraph… 
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HCS: Algorithm 

HCS( G )  

{ 

 MINCUT( G ) = { H1, … , Ht } 

 for each Hi, i = [ 1, t ]  

{ 

   if k( Hi ) > n ÷ 2 

    return Hi 

   else 

    HCS( Hi ) 

 } 

} 

If the subgraph is highly 

connected, then return that 

subgraph as a cluster.  
(Note: k( Hi ) denotes 

edge connectivity of graph 
Hi, n denotes number of 

nodes) 
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HCS: Algorithm 

HCS( G ) 

{ 

 MINCUT( G ) = { H1, … , Ht } 

 for each Hi, i = [ 1, t ]  

   { 

   if k( Hi ) > n ÷ 2 

    return Hi 

   else 

    HCS( Hi ) 

 } 

} 

Otherwise, repeat the 

algorithm on the subgraph. 

(recursive function) 

 

This continues until there 

are no more subgraphs, 

and all clusters have been 

found. 
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HCS: Algorithm 

HCS( G )  

{ 

 MINCUT( G ) = { H1, … , Ht } 

 for each Hi, i = [ 1, t ]  

   { 

   if k( Hi ) > n ÷ 2 

    return Hi 

   else 

    HCS( Hi ) 

 } 

} 

Running time is bounded by 
 2N × f( n, m ) where N 

is the number of clusters 
found, and f( n, m ) is 

the time complexity of 

computing a minimum cut in 
a graph with n nodes and m 

edges. 
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HCS: Algorithm 

HCS( G ) { 

 MINCUT( G ) = { H1, … , Ht } 

 

 for each Hi, i = [ 1, t ] { 

   if k( Hi ) > n ÷ 2 

    return Hi 

   else 

    HCS( Hi ) 

 } 

} 

Deterministic for  

Un-weighted Graph: 
takes O(nm) steps 

where n is the number 

of nodes and m is the 

number of edges 
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HCS: Properties 

 Homogeneity 

 Each cluster has a diameter of at most 2 

 Distance is the minimum length path between two nodes 

 Determined by number of EDGES traveled between nodes 

 Diameter is the longest distance in the graph 

 Each cluster is at least half as dense as a clique 

 Clique is a graph with maximum possible edge connectivity 

 

 

 

 

 

 

 

clique 

Dist( a, d ) = 2 

Dist( a, e ) = 3 

Diam( G ) = 4 

a 

c b 

f 

d 

e 
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HCS: Properties 

 Separation 

 Any non-trivial split is unlikely to have diameter of two 

 Number of edges removed by each iteration is linear in the 

size of the underlying subgraph 

 Compared to quadratic number of edges within final clusters 

 Indicates separation unless sizes are small 

 Does not imply number of edges removed overall 
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HCS: Improvements 

  

2 4 

10 11 

1 

12 

3 

7 

6 

8 
Choosing between cut sets 
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HCS: Improvements 

  

2 

1 

12 7 

6 

8 

4 

10 11 

3 
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HCS: Improvements 

  

2 

1 

12 

6 

7 

8 

4 

11 

3 

10 
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HCS: Improvements 

 Iterated HCS 

 Sometimes there are multiple minimum cuts to choose 

from 

 Some cuts may create “singletons” or nodes that become 

disconnected from the rest of the graph 

 Performs several iterations of HCS until no new cluster is 

found (to find best final clusters) 

 Theoretically adds another O(n) factor to running time, but 

typically only needs 1 – 5 more iterations 
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HCS: Improvements 

 Remove low degree nodes first 

 If node has low degree, likely will just be separated 

from rest of graph 

 Calculating separation for those nodes is expensive 

 Removal helps eliminate unnecessary iterations and 

significantly reduces running time 
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HCS Conclusion 

 Performance 

 With improvements, can handle problems with up to 

thousands of elements in reasonable computing time 

 Generates clusters with high homogeneity and 

separation 

 More robust (responds better when noise is introduced) 

than other approaches based on connectivity 
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Identify connected subgraphs 

The network of protein interactions is typically presented as an undirected graph  

with proteins as nodes and protein interactions as undirected edges. 

 

Aim: identify highly connected subgraphs (clusters) that have more interactions  

within themselves and fewer with the rest of the graph. 

 

A fully connected subgraph, or clique, that is not a part of any other clique is an 

example of such a cluster. 

 

 

In general, clusters need not to be fully connected. 

 

Measure density of connections by 

 

where n is the number of proteins in the cluster 

and m is the number of interactions between them. 

 1
2




nn

m
Q
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Identify all fully connected subgraphs (cliques) 

Generally, finding all cliques of a graph is an NP-hard problem. 

Because the protein interaction graph is sofar very sparse (the number of interactions 

(edges) is similar to the number of proteins (nodes), this can be done quickly. 

 

To find cliques of size n one needs to enumerate only the cliques of size n-1. 

 

The search for cliques starts with n = 4, pick all (known) pairs of edges (6500  6500 

protein interactions) successively. 

For every pair A-B and C-D check whether there are edges between A and C, A and 

D, B and C, and B and D. If these edges are present, ABCD is a clique. 

 

For every clique identified, ABCD, pick all known proteins successively.  

For every picked protein E, if all of the interactions E-A, E-B, E-C, and E-D are known, 

then ABCDE is a clique with size 5.  

 

Continue for n = 6, 7, ...  The largest clique found in the protein-interaction network 

has size 14.  
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Identify all fully connected subgraphs (cliques) 

These results include, however, many redundant cliques. 

For example, the clique with size 14 contains 14 cliques with size 13. 

 

To find all nonredundant subgraphs, mark all proteins comprising the clique of size 

14, and out of all subgraphs of size 13 pick those that have at least one protein 

other than marked. 

 

After all redundant cliques of size 13 are removed, proceed to remove redundant 

twelves etc. 

 

  



 
51 

Monte Carlo Simulation 

Use MC to find a tight subgraph of a predetermined number of nodes M. 

 

At time t = 0, a random set of M nodes is selected. 

For each pair of nodes i,j from this set, the shortest path Lij between i and j on the 

graph is calculated. 

Denote the sum of all shortest paths Lij from this set as L0. 

At every time step one of M nodes is picked at random, and one node is picked at 

random out of all its neighbors. 

 

 

The new sum of all shortest paths, L1, is calculated if the original node were to be 

replaced by this neighbor. 

If L1 < L0, accept replacement with probability 1. 

If L1 > L0, accept replacement with probability 

 where T is the effective temperature.  

T

LL 01

exp
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Monte Carlo Simulation 

Every tenth time step an attempt is made to replace one of the nodes from 

the current set with a node that has no edges to the current set to avoid 

getting caught in an isolated disconnected subgraph. 

 

This process is repeated  

(i) until the original set converges to a complete subgraph, or  

(ii) for a predetermined number of steps,  

after which the tightest subgraph (the subgraph corresponding to the 

smallest L0) is recorded. 

 

The recorded clusters are merged and redundant clusters are removed. 
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Optimal temperature in MC 

simulation 

For every cluster size there is an 

optimal temperature that gives the 

fastest convergence to the tightest 

subgraph. 

Time to find a clique with size 7 in MC steps 

per site as a function of temperature T.  

The region with optimal temperature is 

shown in Inset. 

The required time increases sharply as the 

temperature goes to 0, but has a relatively 

wide plateau in the region 3 < T < 7. 

Simulations suggest that the choice of 

temperature T  M would be safe for any 

cluster size M. 
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Merging Overlapping Clusters 

A simple statistical test shows that nodes which have only one link to a cluster are 

statistically insignificant. Clean such statistically insignificant members first. 

 

Then merge overlapping clusters: 

For every cluster Ai find all clusters Ak that overlap with this cluster by at least one 

protein. 

For every such found cluster calculate Q value of a possible merged cluster  

Ai  U  Ak . Record cluster Abest(i) which gives the highest Q value if merged with Ai. 

 

After the best match is found for every cluster, every cluster Ai is replaced by a 

merged cluster Ai  U  Abest(i) unless Ai  U  Abest(i) is below a certain threshold value 

for QC. 

This process continues until there are no more overlapping clusters or until 

merging any of the remaining clusters witll make a cluster with Q value lower than 

QC. 



Modularity and Community Detection in PPI networks 

 Background. 

 Network module definition. 

 Algorithm for identifying modules in network. 



Biological Networks 

Biological Systems 
Made of many non-identical elements 

connected by diverse interactions. 

Biological Networks 

Biological networks as framework for the study of biological systems 



Nodes: proteins                      
Links: physical interactions  
(Jeong et al., 2001) 

 

Protein Interaction Network 



Metabolic Network 

Nodes: chemicals (substrates) 
Links: chemistry reactions  

(Ravasz et al., 2002) 



Biological System are Modular 

 There is increasing evidence that the cell system is composed of 
modules  

 A “module” in a biological system is a discrete unit whose function is 
separable from those of other modules 

 Modules defined based on functional criteria reflect the critical level of 
biological organization (Hartwell, et al.) 

 A modular system can reuse existing, well-tested modules 

 Functional modules will be reflect in the topological structures of 
biological networks.  

 Identifying functional modules and their relationship from biological 
networks will help to the understanding of the organization, evolution 
and interaction of the cellular systems they represent 

 



Biological Modules  

in Biological Networks 

1 2 

3 



Background: Identify Modules  

from Biological Networks 
 Most efforts focused on detecting highly connected clusters. 

 Ignored the peripheral proteins. 

 Modules with other topology are not identified. 

 Modules are isolated and no inter relationship is revealed. 



Background: Identify Modules  

from Biological Networks (continue) 

 Traditional clustering algorithms have been applied to protein 

interaction networks (PIN) to find biological modules. 

 Need transforming PIN into weighted networks 

 Weight the protein interactions based on number of experiments that 

support the interaction (Pereira-Leal et al). 

 Weight with shortest path length (River et al. and Arnau et al. ). 

 Drawbacks 

 Weights are artificial.  

 “tie in proximity” problem in hierarchical agglomerative clustering (HAC). 

 



Background: Identify Modules  

from Biological Networks (continue) 

 Radicchi et al. (PNAS, 2004) proposed two new 

definitions of module in network. 

 For a sub-graph VG,  the degree definition of 

vertex iV in a undirected graph  

 

           equal to 1 if i and j are directly connected; it is equal 

to zero otherwise. 

 Strong definition of Module 

 Weak definition of Module 
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Background: Identify Modules  

from Biological Networks (continue) 

 Two module definitions do not follow the intuitive concept 

of module exactly. 

 



Degree of Subgraph 

 Given a graph G, let S be a subgraph of G (S G).  

 The adjacent matrix of sub-graph S and its neighbors N can be given as: 

 

 

 Indegree of S, Ind(S):  

 

 Where          is 1 if both vertex i and vertex j are in sub-graph S and 0 

otherwise. 

 Outdegree of S, Outd(S): 

 

 Where         is 1 if only one of vertex i and vertex j belong to sub-graph S and 

0 otherwise.  

otherwise
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Degree of Subgraph: Example 

Ind(1) =16 
Outd(1)=5 

1 2 

3 

Ind(2) =7 
Outd(2)=4 

Ind(3) =8 
Outd(3)=5 



Modularity 

 The modularity M of a sub-graph S in a given graph 

G is defined as the ratio of its indegree, ind(S), and 

outdegree, outd(S): 

)(

)(

Soutd

Sind
M 



New Network Module Definition 

 A subgraph S G is a module if M>1. 

Ind(1) =16 
Outd(1)=5 
M=3.2 

1 2 

3 

Ind(2) =7 
Outd(2)=4 
M=1.75 
 

Ind(3) =8 
Outd(3)=5 
M=1.6 



Comparison to Radicchi’s Module 

Defintions 
 This sample network is a Strong module, but is not a module by this new 

definition based on indegree vs outdegree criteria 



Agglomerative Algorithm for 

Identifying Network Modules 

Flow chart of the agglomerative algorithm 



The Order of Merging 

 Edge Betweenness (Girvan-

Newman, 2002) 

 Defined as the number of 

shortest paths between all 

pairs of vertices that run 

through it. 

 Edges between modules have 

higher betweenness values. 

 

Betweenness =  20 



The Order of Merging (continue) 

 Gradually deleting the edge with the highest 

betweenness will generate an order of edges. 

 Edges between modules will be deleted earlier. 

 Edges inside modules will be deleted later.  

 Reverse the deletion order of edges and use it 

as the merging order. 

 

 



When Merging Occurs? 

 Between two non-modules 

 Between a non-module and a module 

 Not between two modules 



Testing Data Set 

 Yeast Core Protein Interaction Network (PIN).  

 The yeast core PIN from Database of Interacting Proteins 

(DIP) (version ScereCR20041003). 

 Total: 2609 proteins; 6355 links. 

 Large component: 2440 proteins, 6401 interactions. 



86 Modules Obtained from 

DIP Yeast core PIN 



Validation of modules 

 Annotated each protein with the Gene OntologyTM (GO) terms from the 

Saccharomyces Genome Database (SGD) (Cherry et al. 1998; 

Balakrishna et al) 

 Quantified the co-occurrence of GO terms using the hypergeometric 

distribution analysis supported by the Gene Ontology Term Finder of 

SGD(Balakrishna et al) 

 The results show that each module has statistically significant co-

occurrence of bioprocess GO categories 



Validation of modules 

Modules with 100% GO frequency  

Module # GOID GO_term Frequency Genome Frequency Probability 

134 45851 pH reduction 14 out of 14 genes, 100% 21 out of 7274 2.79E-36 

140 6402 mRNA catabolism 14 out of 14 genes, 100% 55 out of 7274 1.99E-30 

23 6267 pre-replicative complex formation and maintenance 7 out of 7 genes, 100% 13 out of 7272 5.83E-20 

99 6617 

SRP-dependent cotranslational protein-membrane 

targeting, signal sequence recognition 6 out of 6 genes, 100% 7 out of 7274 7.94E-19 

109 6207 'de novo' pyrimidine base biosynthesis 5 out of 5 genes, 100% 5 out of 7274 1.53E-16 

54 42147 retrograde transport, endosome to Golgi 5 out of 5 genes, 100% 10 out of 7272 4.91E-15 

108 6303 

double-strand break repair via nonhomologous end-

joining 5 out of 5 genes, 100% 19 out of 7274 1.21E-13 

96 96 sulfur amino acid metabolism 5 out of 5 genes, 100% 31 out of 7274 1.40E-12 

55 6896 Golgi to vacuole transport 4 out of 4 genes, 100% 18 out of 7272 3.75E-11 

84 6109 regulation of carbohydrate metabolism 4 out of 4 genes, 100% 26 out of 7274 1.63E-10 



Validation of modules 
Most significant GO term in top 10 largest modules 

Module # Module Size GOID GO term Frequency Genome Frequency Probability 

202 201 6913 nucleocytoplasmic transport 62 out of 201 genes, 30.8% 105 out of 7274 5.48E-63 

199 111 30163 protein catabolism 46 out of 111 genes, 41.4% 175 out of 7274 2.85E-44 

193 93 16071 mRNA metabolism 58 out of 93 genes, 62.3% 184 out of 7274 4.69E-68 

189 76 7028 cytoplasm organization and biogenesis 56 out of 76 genes, 73.6% 250 out of 7274 5.81E-65 

187 59 30036 

actin cytoskeleton organization and 

biogenesis 31 out of 59 genes, 52.5% 101 out of 7274 9.93E-42 

182 50 6366 

transcription from RNA polymerase II 

promoter 34 out of 50 genes, 68% 270 out of 7274 6.35E-37 

185 45 16573 histone acetylation 17 out of 45 genes, 37.7% 28 out of 7274 8.90E-30 

188 45 6364 rRNA processing 34 out of 45 genes, 75.5% 175 out of 7274 7.18E-46 

175 44 48193 Golgi vesicle transport 36 out of 44 genes, 81.8% 137 out of 7274 1.20E-54 

194 42 6338 chromatin remodeling 18 out of 42 genes, 42.8% 128 out of 7274 6.18E-21 



Validation of modules 

 Comparison with module definitions of Radicchi et al. 

 Running the agglomerative algorithm based on different definitions 

Average lowest P value (-

log10) 

Number of Modules 

(larger than 3) 

Our  16.77497 86 

Weak 12.28661 157 

Strong 13.5531 33 
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Validation of modules 
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Validation of modules 

 P values of modules obtained based our definition plot against P values of 
the corresponding weak modules (line is y=x). 
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Constructing the Network of 

Modules 
 Assembling the 86 MoNet 

modules to form an 
interconnected network of 
modules. 

 For each adjacent module pair, 
the edge that is deleted last 
by the G-N algorithm was 
selected from all the edges that 
connect two modules to 
represent the link between two 
modules.  

1 2 

3 

1 2 

3 



A Section of Module Network of 30 

Largest Modules  



Conclusions 

 Provide a framework for decomposing the protein interaction network into 

functional modules 

 The modules obtained appear to be biological functional modules based on 

clustering of Gene Ontology terms  

 The network of modules provides a plausible way to understanding the 

interactions between these functional modules 

 With the increasing amounts of protein interaction data available, our 

approach will help construct a more complete view of interconnected functional 

modules to better understand the organization of the whole cellular system 



Limitation of Global Algorithms 

 Biological networks 

are incomplete. 

 

 Each vertex can only 

belong to one module. 



Local Optimization Algorithm  



139 Modules Obtained from 

DIP Yeast core PIN 



Example of Module Overlap 



Interconnected Module Network  



Restricted neighborhood search clust. (RNSC) 
90 

 RNSC algorithm - partitions the set of nodes in the network into 

clusters by using a cost function to evaluate the partitioning 

 The algorithm starts with a random cluster assignment 

 It proceeds by reassigning nodes, so as to maximize the scores 

of partitions 

 At the same time, the algorithm keeps a list of already 

explored partitions to avoid their reprocessing 

 Finally, the clusters are filtered based on their size, density and 

functional homogeneity 

A. D. King, N. Przulj and I. Jurisica, “Protein complex prediction via cost-based clustering,”  

Bioinformatics, 20(17): 3013-3020, 2004. 
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Restricted neighborhood search clust. (RNSC) 

 A cost function to evaluate the partitioning: 

 Consider node v in G and clustering C of G 

 αv  is the number of “bad connections” incident with v 

 A bad connection incident to v is an edge that exist between v and a 

node in a different cluster from that where v is, or one that does not 

exist between v and node u in the same cluster as v 

 The cost function is then: 

 Cn(G,C) = ½ ∑v∈V αv  
 

 There are other cost functions, too 

 Goal of each cost function: clustering in which the nodes of 

a cluster are all connected to each other and there are no 

other connections 

91 
A. D. King, N. Przulj and I. Jurisica, “Protein complex prediction via cost-based clustering,”  

Bioinformatics, 20(17): 3013-3020, 2004. 



Molecular Complex Detection (MCODE) 

92 
 Step 1: node weighting 

 Based on the core clustering coefficient 

 Clustering coefficient of a node: the density of its neighborhood 

 A graph is called a “k-core” if the minimal degree in it is k 

 “Core clustering coefficient” of a node: the density of the k-core of 
its immediate neighborhood  

 It increases the weights of heavily interconnected graph regions while 
giving small weights to the less connected vertices, which are 
abundant in the scale-free networks 

 Step 2: the algorithm traverses the weighted graph in a greedy fashion 
to isolate densely connected regions 

 Step 3: The post-processing step filters or adds proteins based on 
connectivity criteria 

 Implementation available as a Cytoscape plug-in 

http://baderlab.org/Software/MCODE  -- a Cytoscape plugin 

http://baderlab.org/Software/MCODE
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Molecular Complex Detection (MCODE) 

 Example: 
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Ref2 
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Pti1 
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Find highest k-core (8-core) 

Removes low degree nodes 

in power-law networks 
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Ref2 

Pta1 

Pti1 

Fip1 Yth1 

Pfs2 
Cft1 

Pap1 

Cft2 

Mpe1 

Find graph density 

Density=       Number edges 

Number possible edges 

= 44/55 = 0.8 
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Calculate score for Pti1 

Ref2 
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Score = highest k-core * density = 8 * 0.8 = 6.4 =  

High 

Low 

Score 
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Find dense regions: 

-Pick highest scoring vertex 

-’Paint’ outwards until threshold score reached 

(% score from 

seed node) 
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Markov Cluster Algorithm (MCL) 
101 

 

 Network flow 

 Imagine a graph as a network of interconnected pipes 

 Suppose water gets into one or more vertices (sources) from 
the outside, and can exit the network at certain other vertices 
(sinks) 

 Then, it will spread in the pipes and reach other nodes, until 
it exits at sinks 

 The capacities of the edges (i.e., how much the pipe can 
carry per unit time) and the input at the sources determine 
the amount of flow along every edge (i.e., how much each 
pipe actually carries) and the amount exiting at each sink 

 



Markov Cluster Algorithm (MCL) 
102 

 Graph power 

 The  kth power of a graph G: a graph with the same set 

of vertices as G and an edge between two vertices iff 

there is a path of length at most k  between them  

 The number of paths of length k between any two 

nodes can be calculated by raising adjacency matrix of 

G to the exponent k 

 Then, G’s  kth power is defined as the graph whose 

adjacency matrix is given by the sum of the first k  

powers of the adjacency matrix: 

 



Markov Cluster Algorithm (MCL) 
103 

G G2 G3 



Markov Cluster Algorithm (MCL) 
104 

 The MCL algorithm simulates flow on a graph and computes its 
successive powers to increase the contrast between regions with 
high flow and regions with a low flow 

 This process can be shown to converge towards a partition of 
the graph into high-flow regions separated by regions of no 
flow 

 

 Very efficient for PPI networks 
 Brohee S, van Helden J: Evaluation of clustering algorithms for protein-

protein interaction networks. BMC bioinformatics 2006, 7:488. 

 Vlasblom, J, Wodak, SJ: Markov clustering versus affinity propagation 
for the partitioning of protein interaction graphs, BMC Bioinformatics 
2009, 10:99. 



Markov Cluster Algorithm (MCL) 
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Flow between different dense regions that are sparsely connected eventually 

“evaporates,” showing cluster structure present in the input graph. 
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Correctness of methods 

 Clustering is used for making predictions: 

 E.g., protein function, involvement in disease, interaction 

prediction 

 Other methods are used for classifying the data 

(have disease or not) and making predictions 

 Have to evaluate the correctness of the predictions 

made by the approach 

 Commonly used method for this is ROC Curves 
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Definitions (e.g., for PPIs): 

 A true positive (TP) interaction:  
 an interaction exists in the cell and is discovered by an 

experiment (biological or computational). 

 A true negative (TN) interaction:  
 an interaction does not exist and is not discovered by an 

experiment. 

 A false positive (FP) interaction:  
 an interaction does not exist in the cell, but is discovered by an 

experiment. 

 A false negative (FN) interaction:  
 an interaction exists in the cell, but is not discovered by an 

experiment. 

 

Correctness of methods 



 If TP stands for true positives, FP for false positives, TN for true negatives, and 
FN for false negatives, then:  

 Sensitivity = TP / (TP + FN) 

 Specificity = TN / (TN + FP)  

 Sensitivity measures the fraction of items out of all possible ones that truly exist 
in the biological system that our method successfully identifies (fraction of 
correctly classified existing items) 

 Specificity measures the fraction of the items out of all items that truly do not 
exist in the biological system for which our method correctly determines that they 
do not exist (fraction of  

 correctly classified non-existing items) 

 Thus, 1-Specificity measures the fraction of  

 all non-existing items in the system that are  

 incorrectly identified as existing 

Correctness of methods 
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 Receiver Operating Curves (ROC curves) provide a standard measure of 
the ability of a test to correctly classify objects.  

 

 E.g., the biomedical field uses ROC curves extensively to assess the efficacy 
of diagnostic tests in discriminating between healthy and diseased 
individuals.  
 

 ROC curve is a graphical plot of the true positive rate, i.e., sensitivity, vs. 
false positive rate, i.e., (1−specificity), for a binary classifier system as its 
discrimination threshold is varied (see above for definitions).   
 

 It shows the tradeoff between sensitivity and specificity (any increase in 
sensitivity will be accompanied by a decrease in specificity).  
 

 The closer the curve follows the left-hand border and then the top border of 
the ROC space, the more accurate the test; the closer the curve comes to the 
45-degree diagonal of the ROC space, the less accurate the test. The area 
under the curve (AUC) is a measure of a test’s accuracy. 

ROC Curve 
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ROC curve 
Example: 

 Embed nodes of a PPI network into 3-D Euclidean unit box  

 (use MDS – knowledge of MDS not required in this class, see reference in the footer, 
if interested) 

 Like in GEO, choose a radius r to determine node connectivity 

 Vary r between 0 and sqrt(3) (diagonal of the box) 
 r=0 makes a graph with no edges (TP=0, FP=0) 

 r=sqrt(3) makes a complete graph (all possible edges, FN=TN=0)  

 For each r in [0, sqrt(3)]:  
 measure TP, TN, FP, FN  

 compute sensitivity and 1- specificity 

 draw the point 

 Set of these points is the ROC curve 

 
Note:  

 For r=0, sensitivity=0 and 1-specificity=0, since TP=0, FP=0 (no edges) 

 For r=sqrt(3), sensitivity=1 and 1-specificity=1 (or 100%), since FN=0, TN=0 

 D. J. Higham, M. Rasajski, N. Przulj, “Fitting a Geometric Graph to a Protein-Protein Interaction Network”, 
Bioinformatics, 24(8), 1093-1099, 2008. 

Sensitivity = TP / (TP + FN) 

Specificity = TN / (TN + FP)  

 



Precision and recall 
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 Information about true negatives is often not available  

 Precision - a measure of exactness 

 Recall - a measure of completeness 

 

 
 

 

 E.g., given that we produce n cancer gene predictions 

 Precision is the number of known cancer genes in our n predictions, 
divided by n 

 Recall is the number of known cancer genes in our n predictions divided 
by the total number of known cancer genes 

 F-score – measures test accuracy, weighted average of precission 
and recall (in [0,1]):  

Sensitivity = TP / (TP + FN) 
 

Specificity = TN / (TN + FP)  

 



Hypergeometric distribution 
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 Probability distribution that describes the number of successes in a sequence 
of n draws from a finite population of size N without replacement  

 For draws with replacement, use binomial distribution 

 

 

 
 

 

 N  -  the total number of objects (e.g., nodes in a network) 

 m  - the number of objects out of n objects with a given “function” (color) 

 n   -  number of draws from N (e.g., the size of a cluster) 

 k   - the number of objects out of n objects that have the given function  
 

- To get the enrichment p-value for a cluster of size n, sum over i=k,k+1,…,m 

- Use hygecdf function in Matlab (but use 1-hygecdf(…)), since it computes probability 
to get 0 to k elements of a given function 



Motivation 113 

 Genetic sequence research – valuable insights 

 Genes produce thousands of different proteins 

 Proteins interact in complex ways to perform a function 

 They do not act in isolation 

 Biological network research – at least as valuable insights as 
genetic sequence research 

 However, the field is still in its infancy: 

 Incomplete/noisy network data 

 Computational intractability of many graph theoretic problems 

 Defining the relationship between network topology and 
biological function – one of the most important problems in 
post-genomic era 

Network Topology → Biology 



Network Topology → Biology 
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Network Topology → Biology 
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Network Topology → Biology 
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Network Topology → Biology 
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Network Topology → Biology 
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Protein function prediction 
 One of the major challenges in the post-genomic era: 

 Relationship between PPI network topology and biological function? 

 Methods for protein function prediction: 

 Direct methods: proteins that are closer in the PPI network are more likely to 
have similar function 

 Majority-rule (Schwikowski et al., 2000) 

 n-neighborhood (Hishigaki et al., 2001) 

 1- and 2-neighborhood with different weights (Chua et al., 2006) 

 Global optimization strategies (Vazquez et al., 2003) 

 “Functional flow” (Nabieva et al., 2005) 

 

Direct neighborhood Shared neighborhood 
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Protein function prediction 

 One of the major challenges in the post-genomic era: 

 Relationship between PPI network topology and biological function? 

 Methods for protein function prediction: 

 Cluster-based methods: partition the network into clusters (i.e., functional 

modules) and assign the entire cluster with a function 

 Detecting dense network regions:  

• MCODE (Bader and Hogue, 2003), HCS (Przulj et al., 2003); RNSC (King et al., 2004)... 

 Hierarchical clustering:  

• The key step: defining the similarity measure between protein pairs 

• E.g., the shortest path length (Arnau et al.2005) or Czekanowski-Dice distance (Brun et al., 2004) 
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Disease-genes and drug-targets 

 Emerging research field: understanding the networks 

underlying human disease 
 

 Analyzing topological properties of disease genes in PPI 

networks & identifying novel disease genes 
 

 Defining the relationship between disorders and disease 

genes 
 

 Defining the relationship between drugs and drug targets 
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Topological properties of disease genes 

 Cancer genes: greater connectivity and centrality  

 (Jonsson and Bates, ‘06) 

 Only essential disease genes show higher connectivities  

 (Goh et al., ‘07) 

 Disease genes have similar graphlet degree signatures in PPI networks 

(Milenkovic and Przulj, ‘08) 

 

 

 



Cancer gene identification 
127 

 Network neighbors of cancer genes also involved in cancer (Aragues et al., ‘08) 

 Do the genes that are involved in cancer have similar topological signatures without 
necessarily being adjacent in the network? (Milenkovic et al., ‘10) 

 96% of signature-similar known cancer gene pairs not direct neighbors 

 Apply a series of clustering methods to proteins’ signature similarities 

 Hierarchical clustering (HIE) 

 K-medoids (KM) 

 K-nearest neighbors (KNN) 

 Signature-threshold based clustering (ST) 

 Analyze if the obtained clusters are statistically significantly enriched with known cancer 
genes 

 Predict novel cancer gene candidates 

 Measure prediction accuracy of our approach 

 Validate predictions in the literature and biologically 

 Demonstrate superiority over other approaches (Aragues et al. ‘08) 
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The disease network (Goh et al., 2007) 

 The challenge: many-to-many relationships 

 Global view from a higher level of cellular organization 

 The “disease phenome”: a systematic linkage of all genetic disorders 

 The “disease genome”: the complete list of disease genes 

 The “diseasome”, the combined set of all known associations between disorders and 
disease genes. 

 Two projections of the diseasome: 

 The human disease network (HDN) 

 The disease gene network (DGN) 

 Both projections are far from being disconnected 

 Clustering of disorders and disease genes 

 Overlaying DGN with the human PPI network 

 Overlap of 290 interactions 

 Genes involved in the same disease tend to interact in the PPI network 

 Only essential disease genes are topologically and functionally central 
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 Druggable genome 

 DrugBank 

Drugs and drug targets 
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 The drug target network (Yildirim et al. 2007) 

 Two projections: “Drug network” & “Target-protein network” 

 The majority of drugs shared targets with other drugs 

 Industry trends: new drugs target already known targets 

 But, experimental drugs target more diverse set of proteins 

 Overlying target-protein network with human PPI network 

 262 drug targets present in the human PPI network 

 These targets have higher degrees, but are not essential proteins 

 Do drug targets correspond to disease genes? 

 Most drugs target disease-genes indirectly 

 However, cancer drugs directly target the actual cause of disease 

Drugs and drug targets 
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Circles = drugs, rectangles = target proteins, edge = the protein is a known target of the drug, size = degree. 



Network alignment 
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 Pathblast/Networkblast 



Network alignment 
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Network alignment 
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 Applications: 

 Protein function prediction 

 Prediction of protein interactions 

 Identification of the core interactome 

 Identification of evolutionary conserved subgraphs 

 Construction of phylogenetic trees 

 



Uncovering components of pathways/networks underlying 

certain biological processes 
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Experiments computational predictions  experiments 

E.g., EDNRB-focused melanogenesis network 

H. Ho, T. Milenković, et al. “Protein Interaction Network 

Topology Uncovers Melanogenesis Regulatory 

Network Components Within Functional Genomics 

Datasets,” BMC Systems Biology, 2010. 



Uncovering components of pathways/networks underlying 

certain biological processes 
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 E.g., yeast proteasome network 

 Reveal the interconnectivity of the proteasome complex with 

other protein complexes 


