The McCulloch-Pitts Neuron

- The first mathematical model of a neuron [Warren McCulloch and Walter Pitts, 1943]
- Binary activation: fires (1) or not fires (0)
- Excitatory inputs: the a's, and
 Inhibitory inputs: the b's
- Unit weights and fixed threshold θ
- Absolute inhibition

\[
\begin{align*}
 c_{t+1} &= \begin{cases}
 1 & \text{If } \sum_{i=0}^{n} a_{i,t} \geq \theta \text{ and } b_{1,t} = \cdots = b_{m,t} = 0 \\
 0 & \text{Otherwise}
 \end{cases}
\end{align*}
\]
Any task or phenomenon that can be represented as a logic function can be modelled by a network of MP-neurons

- \{\text{OR, AND, NOT}\} is functionally complete
- Any Boolean function can be implemented using OR, AND and NOT
- Canonical forms: CSOP or CPOS forms
- MP-neurons \(\Leftrightarrow\) Finite State Automata
Limitation of MP-neurons and Solution

• Problems with MP-neurons
 – Weights and thresholds are analytically determined. Cannot learn
 – Very difficult to minimize size of a network
 – What about non-discrete and/or non-binary tasks?

• Perceptron solution [Rosenblatt, 1958]
 – Weights and thresholds can be determined analytically or by a learning algorithm
 – Continuous, bipolar and multiple-valued versions
 – Efficient minimization heuristics exist
Perceptron

- Architecture
 - Input: \(\vec{x} = (x_0 = 1, x_1, \ldots, x_n) \)
 - Weight: \(\vec{w} = (w_0 = -\theta, w_1, \ldots, w_n) \), \(\theta = \text{bias} \)
 - Net input: \(y = \vec{w} \cdot \vec{x} = \sum_{i=0}^{n} w_i x_i \)
 - Output \(f(\vec{x}) = g(\vec{w} \cdot \vec{x}) = \begin{cases} 0 & \text{If } \vec{w} \cdot \vec{x} < 0 \\ 1 & \text{If } \vec{w} \cdot \vec{x} \geq 0 \end{cases} \)

- Pattern classification

- Supervised learning

- Error-correction learning
• Perceptron’s decision boundary

\[w_1 x_1 + \cdots + w_n x_n = \theta \]

\[w_0 x_0 + w_1 x_1 + \cdots + w_n x_n = 0 \]

• All points
 – below the hyperplane have value 0
 – on the hyperplane have the same value
 – above the hyperplane have value 1
Perceptron Analysis
(continued)

- **Linear Separability**

 - A problem (or task or set of examples) is linearly separable if there exists a hyperplane $w_0x_0 + w_1x_1 + \cdots + w_nx_n = 0$ that separates the examples into two distinct classes.

 - Perceptron can only learn (compute) tasks that are linearly separable.

 - The weight vector \vec{w} of the perceptron correspond to the coefficients of the separating line.

- **Non-Linear Separability**

 - Limitations of the perceptron: many real-world problems are highly non-linear.

 - Simple Boolean functions:
 * XOR, EQUALITY, ... etc.
 * Linear, parity, symmetric or ... functions
• Test problem

 – Let the set of training examples be
 \[
 \begin{align*}
 \vec{x}_1 &= (1, 2), d_1 = 1 \\
 \vec{x}_2 &= (-1, 2), d_2 = 0 \\
 \vec{x}_3 &= (0, -1), d_3 = 0
 \end{align*}
 \]

 – The bias (or threshold) be \(b = 0 \)

 – The initial weight vector be \(\vec{w} = (1, 0.8) \)

We want to obtain a learning algorithm that finds a weight vector \(\vec{w} \) which will correctly classify (separate) the examples.
• First input \vec{x}_1 is misclassified with positive error. What to do?

• Idea: move hyperplane to separating position

• Solution:

 – Move \vec{w} closer to \vec{x}_1: add \vec{x}_1 to \vec{w}.

 \[
 * \vec{w} = \vec{w} + \vec{x}_1
 \]

 – First rule: \textit{positive error rule}

 If $d = 1$ and $a = 0$ then $\vec{w}^{\text{new}} = \vec{w}^{\text{old}} + \vec{x}$
Perceptron Learning Rule
(continued)

- Second input \vec{x}_2 is misclassified with negative error

- Solution:
 - Move \vec{w} away from \vec{x}_2: substract \vec{x}_2 from \vec{w}.
 \[
 \vec{w} = \vec{w} - \vec{x}_2
 \]
 - Second rule: *negative error rule*

 If $d = 0$ and $a = 1$ then $\vec{w}^{new} = \vec{w}^{old} - \vec{x}$
• Third input \vec{x}_3 is misclassified with negative error

• Move \vec{w} away from to \vec{x}_3: $\vec{w} = \vec{w} - \vec{x}_3$

• The perceptron will correctly classify inputs $\vec{x}_1, \vec{x}_2, \vec{x}_3$ if presented to it again. There will be no errors

• Third rule: *no error rule*

\[
\text{If } d = a \text{ then } \vec{w}_{\text{new}} = \vec{w}_{\text{old}}
\]
Perceptron Learning Rule
(continued)

• Unified learning rule

\[\vec{w}^{new} = \vec{w}^{old} + \delta \vec{x} = \vec{w}^{old} + (d - a) \vec{x} \]

• With learning rate \(\eta \)

\[\vec{w}^{new} = \vec{w}^{old} + \eta \delta \vec{x} = \vec{w}^{old} + \eta (d - a) \vec{x} \]

• Choice of learning rate \(\eta \)

 – Too large: learning oscillates

 – Too small: very slow learning

 – \(0 < \eta \leq 1 \). Popular choices:

 * \(\eta = 0.5 \)

 * \(\eta = 1 \)

 – Variable learning rate \(\eta = \frac{|\vec{w} \cdot \vec{x}|}{|\vec{x}|^2} \)

 – Adaptive learning rate

 – . . . etc.
Perceptron Learning Algorithm

Initialization: \(\vec{w}_0 = \vec{0} \);
\(t = 0 \);

Repeat
\(t = t + 1 \);
\(\text{Error} = 0 \);
For each training example \([\vec{x}, d_{\vec{x}}] \) do
\[\text{net} = \vec{w} \cdot \vec{x}; \]
\[a_{\vec{x}} = g(\text{net}); \]
\[\delta_{\vec{x}} = d_{\vec{x}} - a_{\vec{x}}; \]
\[\text{Error} = \text{Error} + |\delta_{\vec{x}}|; \]
\[\vec{w}_{t+1} = \vec{w}_t + \eta \cdot \delta_{\vec{x}} \cdot \vec{x}; \]
\{ or equivalently, \}
For \(0 \leq i \leq n \)
\[w_{i,t+1} = w_{i,t} + \eta \cdot \delta_{\vec{x}} \cdot x_i; \]
\} Until \(\text{Error} = 0 \);
Save last weight vector;

- **Perceptron convergence theorem:** [M. Minsky and S. Papert, 1969] The perceptron learning algorithm terminates if and only if the task is linearly separable

- Cannot learn non-linearly separable functions
• Termination criteria
 – Assured for small enough η and l.s. functions
 – For non-l.s. functions: halt when number of mis-classifications is minimal

• Problem representation
 – Non-numeric inputs: encode into numeric form
 – Multiple-class problem:
 * Use single-layer network
 * Each output node corresponds to one class
 * A u-neuron network can classify inputs into 2^u classes

• Variations of perceptron
 – Bipolar vs. binary encodings
 – Threshold vs. signum functions
• Robust classification for linearly non-separable problems?

• Find \vec{w} such that the number of misclassifications is as small as possible.

Initialization: $\vec{w}_0 = \text{PerceptronLearning}$;
$Error_{\vec{w}_0}$ = number of misclassifications of \vec{w}_0;
Pocket = \vec{w}_0;
$t = 0$;
Repeat
 $t = t + 1$;
 $\vec{w}_t = \text{PerceptronLearning}$;
 If $Error_{\vec{w}_t} < Error_{\vec{w}_{t-1}}$ Then
 Pocket = \vec{w}_t;
Until $t = \text{MaxIterations}$;

Best weight so far is stored in Pocket;

• Initial weight in $\text{PerceptronLearning}$ should be random

• Presentation of training examples in $\text{PerceptronLearning}$ should be random

• Slow but robust learning for non-separable tasks
Adaline

\[x_0 = 1 \]

- **Architecture**
 - Input: \(\vec{x} = (x_0 = 1, x_1, \ldots, x_n) \)
 - Weight: \(\vec{w} = (w_0 = -\theta, w_1, \ldots, w_n), \theta = \text{bias} \)
 - Net input: \(y = \vec{w} \vec{x} = \sum_{i=0}^{n} w_i x_i \)
 - Output \(f(\vec{x}) = g(\vec{w} \vec{x}) = \vec{w} \vec{x} \)

- **Pattern classification**

- **Supervised learning**

- **Error-correction learning**
Adaline Analysis

• Adaline’s decision boundary

\[w_0x_0 + w_1x_1 + \cdots + w_nx_n = 0 \]

• The Adaline

 – has a decision boundary like the perceptron

 – can be used to classify objects into two categories

 – has same limitation as the perceptron
• Data fitting (or linear regression)

 – Set of measurements: \(\{(x, d_x)\} \)

 – Find \(w \) and \(b \) such that

\[
d_x \approx wx + b
\]

or more specifically,

\[
d_i = wx_i + b + \varepsilon_i = y_i + \varepsilon_i
\]

where

* \(\varepsilon_i \) = instantaneous error

* \(y_i \) = linearly fitted value

* \(w \) = line slope, \(b \) = \(d \)-axis intercept (or bias)
Adaline Learning Principle
(continued)

• Best fit problem: find the best choice of \((\vec{w}, b)\) such that the fitted line passes closest to all points

• Solution: Least squares
 - Minimize sum of squared errors (SSE) or mean of squared errors (MSE)
 - Error \(\varepsilon_{\vec{x}} = d_{\vec{x}} - \tilde{d}_{\vec{x}}\) where \(\tilde{d}_{\vec{x}} = \vec{w}\vec{x} + b\)
 - MSE:
 \[
 J = \frac{1}{N} \sum_{i=1}^{N} \varepsilon_{\vec{x}_i}^2
 \]
Adaline Learning Principle
(continued)

- The minimum MSE, called the *least mean square* (LMS) can be obtained analytically:

\[
\frac{\delta J}{\delta \vec{w}} = 0
\]

\[
\frac{\delta J}{\delta b} = 0
\]

and solve for \(\vec{w}\) and \(b\)

- Pattern classification can be interpreted as a linear

- LMS is difficult to obtain for larger dimensions (complex formula) and larger data sets

- Adaline:
 - Learns by minimizing the MSE
 - Not sensitive to noise
 - Powerful and robust learning
Adaline Learning Algorithm

- Gradient descent
 - A learning example: $[\vec{x}, d_{\vec{x}}]$
 - Actual output: $net_{\vec{x}} =$
 - Desired output: $d_{\vec{x}}$
 - Squared error: $E_{\vec{x}} = (d_{\vec{x}} - net_{\vec{x}})^2$
 - Gradient of $E_{\vec{x}}$:

 $\nabla E_{\vec{x}} = \frac{\delta E_{\vec{x}}}{\delta \vec{w}} = \left(\frac{\delta E_{\vec{x}}}{\delta w_0}, \frac{\delta E_{\vec{x}}}{\delta w_1}, \ldots, \frac{\delta E_{\vec{x}}}{\delta w_n} \right)$

- $E_{\vec{x}}$ is minimal if and only if $\nabla E_{\vec{x}} = 0$

- Negative gradient of $E_{\vec{x}}$:

 $$-\nabla E_{\vec{x}}$$

 gives direction of steepest descent to the minimum

- Gradient descent:

 $$\Delta \vec{w} = -\eta \nabla E_{\vec{x}} = -\frac{\delta E_{\vec{x}}}{\delta \vec{w}}$$
Adaline Learning Algorithm
(continued)

- Widrow-Hoff delta rule

\[
\frac{\delta E}{\delta w_i} = 2(d - net)x \frac{\delta(-net)x}{\delta w_i} \\
= (d - net)x \frac{\delta(-\sum_{j=0}^{n} w_j x_j)}{\delta w_i} \\
= -(d - net)x_i
\]

- ⇒ Learning rule:

\[
\bar{w}^{new} = \bar{w}^{old} + \eta(d - net)x \bar{x}
\]
Adaline Learning Algorithm
(continued)

Initialization: \(\vec{w}_0 = \vec{0} \);
\(t = 0 \);
Repeat
\(t = t + 1 \);
For each training example \([\vec{x}, d_{\vec{x}}]\) do
\[\text{net}_{\vec{x}} = \vec{w} \cdot \vec{x};\]
\[a_{\vec{x}} = g(\text{net}_{\vec{x}}) = \text{net}_{\vec{x}};\]
\[\delta_{\vec{x}} = d_{\vec{x}} - a_{\vec{x}};\]
\[\vec{w}_{t+1} = \vec{w}_t + \eta \cdot \delta_{\vec{x}} \cdot \vec{x};\]
\{ or equivalently, \}
For \(0 \leq i \leq n \)
\[w_{i,t+1} = w_{i,t} + \eta \cdot \delta_{\vec{x}} \cdot x_i;\]
\}
Until \(\text{MSE}(\vec{w}) \) is minimal;
Save last weight vector;

- Can be used for function approximation task as well