

Gene Regulation and Microarrays

• A. Gene Expression and Regulation

• B. Measuring Gene Expression: Microarrays

• C. Finding Regulatory Motifs

A. Regulation of Gene Expression

- A genome is static
 - Every cell in our body has a copy of same genome
- A cell is dynamic
 - Responds to external conditions
 - Most cells follow a cell cycle of division
- Cells differentiate during development

- Gene regulation is responsible for dynamic cell
- Gene expression varies according to:
 - Cell type
 - Cell cycle
 - External conditions
 - Location

Where gene regulation takes place

- Opening of chromatin
- Transcription
- Translation
- Protein stability
- Protein modifications

- Strongest regulation happens during transcription
- Best place to regulate:

No energy wasted making intermediate products

- However, slowest response time After a receptor notices a change:
 - 1. Cascade message to nucleus
 - 2. Open chromatin & bind transcription factors
 - 3. Recruit RNA polymerase and transcribe
 - 4. Splice mRNA and send to cytoplasm
 - 5. Translate into protein

Transcription Factors Binding to DNA

Transcription regulation:

Certain transcription factors bind DNA

Binding recognizes DNA substrings:

Regulatory motifs

Promoter and Enhancers

- Promoter necessary to start transcription
- Enhancers can affect transcription from afar

Regulation of Genes

Regulation of Genes

Regulation of Genes

- TATA box: positioning transcription start
- TATA, CCAAT: constitutive transcription
- GRE: glucocorticoid response
- MRE: metal response
- HSE: heat shock element

The Cell as a Regulatory Network (2)

B. DNA Microarrays

Measuring gene transcription in a highthroughput fashion

What is a microarray

What is a microarray (2)

- A 2D array of DNA sequences from thousands of genes
- Each spot has many copies of same gene
- Allow mRNAs from a sample to hybridize
- Measure number of hybridizations per spot

- Method 1: *DNA microarray* (Stanford)
 - Use PCR to amplify a 1Kb portion of each gene
 - Apply each sample on glass slide
- Method 2: *DNA Chip* (Affymetrix)
 - Grow oligonucleotides (25bp) on glass
 - Several words per gene (choose unique words)
- If we know the gene sequences, Can sample all genes in one experiment!

Sample Data

🗉 sample.cdt - WordPad

File Edit View Insert Format Help

D 🚅 🖬 🚳 🖪 🙀 🐰 🖻 🛍 🗠 👒

GID	GENE	NAME	GWEIGHT C	dc15_250	cdc15_29	0 cdc15	270	elu90	alpha7	alpha)	elu30	elu0	elu60	cdc28	_10	cdc28	_0	cdc15	10	cdc15_
AID			ARRY43X	ARRY45	X AF	RY44X	ARRY66	X	ARRY5X	ARRY42	Z.	ARRY6	4X	ARRY63	3X	ARRY6.	5X	ARRY47	X	ARRY4	5X
EWEIGH	IT		1	1	1 1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1
GENE72	6X	YHLO49	C YHLO49C	- Unknown	1	-0.54	-0.42	-0.62	0.32	0.2	0	0.35	0.19	1.03	1.93	-0.39	0.19	-0.42	-0.52	-0.34	-0.34
GENE72	1X	YOL017	W YOLO17W	- Unknown	1	-0.64	-0.36	-0.36	0.05 -0.08	0.48	-0.04	-0.37	0.07	0.39	0.54		0.32	-0.78	-0.31	0.02	0.03
GENE23	5X	YLR467	W YRF1-5	 Y'helica 	se with	near iden	tity to	other	: subtelomer	ically-	-encode	ed prot	teins :	includi	ing Ye	r189p,	Yml133	3p, and	ł Yj122	:5p	1
GENE1X	5	YORO84	W YORO84W	- Unknown	1	-0.5	-0.59	-0.66	0.43 0.19	1.04	-0.05	-0.73	-0.31	-0.15	-0.05	0.49	0.36	0.91	0.02	0.2	0.29
GENE47	7X	YOL070	C YOLO7OC	- Unknown	1	0.15	-0.06	-0.31	0 -0.13	-0.24	-0.26	0.13	0.08	-0.52	0.04	0.11	0.43	-0.29	-0.45	0.21	0.06
GENE47	'8X	YJRO43	C POL32 -	Small (55	i kDa) su	ubunit of	DNA pol	ymeras	se delta, ir	wolved	in erm	ror-pr	one DN.	A repai	ir	1	-0.1	-0.11	0.19	-0.08	-0.36
GENE25	58X	YER118	C SHO1 -	Osmosensor	in the	HOG1 MAP	kinase,	high-	osmolarity	signal	transo	duction	n path	way, ha	as an S	SH3 dom	main	1	-0.73	-0.5	-0.75
GENE30)8X	YLR413	W YLR413W	- Unknown	1	-0.06	0.03	-0.37	-0.49 -0.14	-0.58	-0.1	0.78	0.47	-0.34	-0.49	-0.04	-0.14	-0.93	-0.14	-0.09	0.22
GENE 50)8X	YNL111	.C CYB5 - (cytochrome	b5 1	-0.03	0.01	-0.02	-0.38 0.45	0.09	0.31	0.09	0.37	0.13	-0.31	-0.9	0.21	-0.19	-0.07	-0.41	-0.04
GENE76	50X	YIL119	C RPI1 -	Negative r	egulator	of ras-c	AMP pat	hway,	downregulat	es norr	nal but	t not i	mutant	ras fu	unction	n	1	-0.15	0.03	0	-0.18
GENE40	XOX	YLR302	C YLR302C	- Unknown	1	-0.13	0.02	-0.35	-0.12 -0.13	-0.23	-0.06	-0.22	0.29	-0.48	-0.42	0.26		0.4	0.01	0.34	0.46
GENE 69	97X	YKLO67	W YNK1 -	Nucleoside	diphosp	hate kina	se, res	ponsik	le for synt	hesis d	of all	nucle	oside (triphos	sphate:	s excep	pt ATP		1	-0.1	-0.3
GENE82	X	YIRO17	C MET28 -	Transcrip	tional s	activator	regulat	ing su	ulfur amino	acid me	tabol:	ism that	at fund	ctions	with 1	Met4p	and Cb:	Elp, me	ember o	of the	basic
GENE48	35X	YHR149	C YHR149C	- Unknown	1	0.09	0.8	0.27	-0.16 0.02	-0.29	-0.54	2.42	0.24	-1.26		-1.97	0.06	-0.21	0.32	-0.04	-0.03
GENE40)8X	YELO64	C YELO64C	- Unknown	1	0.1	0.43	0.21	-0.32 0.67	-0.65	-0.27	0.51	0.02	-1.4	-0.56	-1.5	0.08	-0.62	0.26	0.26	0.27
GENE78	34X	YDRO85	C AFR1 -	Protein ir	wolved i	n morphog	enesis	of the	e mating pro	jection	n	1	0.28	0.36	0.18	-0.44	-0.27	0.09	0.1	1.02	-0.1
GENE34	5X	YJRO54	W YJRO54W	- Unknown	1	-0.02	-0.04	-0.09	-0.17 0.11	0.08	-0.19	0.29	-0.19	-0.67	0.03	-0.68	0.11	-0.29	0.05	0.29	0.13
GENE31	.7X	YPR156	C YPR156C	- Unknown	1	-1.2			-0.13	-0.37	-0.28	0.15	0.17	-1.08	-0.18				0.04	0.22	0.04
GENE23	OX	YGLO38	C OCH1 - 1	membrane-bo	und alph	na-1,6-man	nosyltr	ansfer	ase 1	-0.05	0.11	0.07	-0.15	0.47	-0.14	0.12	0.35	-0.25	-1.07	-0.95	-0.93
GENE75	6X	YGR188	C BUB1 -	Serine/thr	eonine p	orotein ki	nase an	d chec	kpoint prot	ein red	quired	for ce	ell cyd	le arr	rest in	n resp	onse to	o loss	of mid	rotubu	ale fur
GENE34	9X	YOLO58	W ARG1 -	Argininosu	lccinate	synthetas	e (citr	ulline	easpartate	ligase	e), cat	talyze	s the p	penulti	imate :	step i	n argin	nine sy	nthes:	s	1
GENE37	'OX	YJR154	W YJR154W	- Unknown	1	-0.63	-0.53	0.26	-0.34 -0.1	-0.61	-0.48	-0.59	-0.34	-0.11	0.83	-0.5	-0.14	0.05	-0.05	-0.52	-0.22
GENE3X	2	YPL253	C VIK1 -	Probable o	oiled-co	oil protei	n that	intera	acts with Ka	ar3p	1	-1.26	-0.63	-0.9	0.29	0.07	0.01	0.05	-0.2	0.03	-0.08
GENE37	'5X	YLLO67	C YLLO67C	- Proteir	. similar	to other	subtel	omeric	ally-encode	d prote	eins	1	-0.91	-0.58	0.27	0.09	-0.2	-0.23	-0.04	-0.27	-0.05
GENE18	зх	YGRO35	C YGRO35C	- Unknown	1	-0.49	-0.08	-0.23	-0.04 -0.02	0.52	-0.11	-0.06	0	-0.42	-0.48	-0.54	0.01	-0.09	-0.54	0.02	0.05
GENE25	9X	YORO66	W YORO66W	- Unknown	1	-0.55	-0.43	-0.43	0.52 0.06	0.07	-0.45	0.11	-0.14	-0.25	-0.44	-0.25	0.02	-0.15	-0.58	-0.34	0.19
GENE78	32X	YLR458	W YLR458W	- Unknown	1	-0.5	-0.32	-0.26	-0.21 -0.59	1.87	-0.73	-0.47	0.01	-0.82	-0.53	-0.68	0.65	-0.43	-0.92	-0.38	0.2
GENE 60	9X	YLR288	C MEC3 -	Checkpoint	protein	n required	for ar	rest i	in G2 phase	after I	NA dar	mage a	nd for	delay	in G1	and S	phases	s durir	ng DNA	damage	2
GENE31	.5X	YMR253	C YMR253C	- Unknown	1	-0.45	-1.36	-0.43	0.08 -0.07	,	-0.62	-0.2	0.04	0.18	-0.36	-0.09	0.31	-0.43	-0.55	-0.5	0.21
GENE12	6X	YBLO52	C SAS3 -	Catalytic	subunit	of NuA3 h	istone	acetyl	ltransferase	comple	ex, in:	fluence	es sile	encing	at HM	R locu	s, has	a sing	gle C2B	H2-type	e zinc

Visualization Tools

and the set		
🗟 GeneXPress: sample	Bxb	
<u>F</u> ile ⊻iew F <u>i</u> nd <u>A</u> ttribu	tes A <u>n</u> alyze <u>M</u> otifs <u>N</u> etworks <u>H</u> elp	
Cluster	Tree BirdsEye	
	Cluster 1588 Genes: 795 Experiments: 77 Mean: 0.00 +/- 0.57 Spots: 58582/61215	
0 2020 Cluster 1588 Genes: 795 Experiments: 77 Mean: 0.00 +/- 0.57 Spots: 58582/61215		
Expression Colors Pos.: Int. 1.0 Zero; Xero; Kero; Ker		YHLU49C - Unknown (YHLU49C) YDL017W - Unknown (YDL017W) YRF15 - Yhelicase with near identity to other subtelomerically-encoded proteins inclu YDR084W - Unknown (YDR084W) POL32 - Small (55 kDa) subunit of DNA polymerase delta, involved in error-prone DNA SH01 - Dsmocensor in the H064 MAP kinase, high-osmolarity signal transduction path YL6412W - Unknown (YE413W) CFPC - cytochrome b5 (YNL11C) CFPC - cytochrome b5 (YNL11C) CFPC - cytochrome b5 (YNL11C) CFPC - tytochrome b5 (YNL11C) YHS149 - Unknowin (YHE1492) YNK1 - Nucleoside diphosphate kinase, responsible for synthesis of all nucleoside triph MET28 - Transcriptional activator regulating sulfur amino acid metabolism that functio YHR1490 - Unknowin (YHE149C)
W:8 H:8 Pixel Padding H:0 V:0		YELD64C - Unknown (YELD64C) AFR1 - Protein involved in morphogenesis of the mating projection (YDR085C) YBR166C - Unknown (YBR165C) BUB1 - memorphes bound alpha-kinase and oheokopint protein required for cell cycle a R6 1 - Argininosuccinate synthetase (citrulline-aspartate ligase), catalyzes the penulti YJR154W - Unknown (YJR164W) VIK1 - Probable colicate synthetase (citrulline-aspartate ligase), catalyzes the penulti YLC057C - Protein similar to other subtelomerically-encoded proteins (YLL067C) YCR035C - Unknown (YCR086C) YDR056W - Unknown (YCR086W) YLR057W - Unknown (YCR086W)
Sort Genes: By Descendants Cluster Genes		MicEo2: Surgeon protein required for arrest in 92 phase after DRA damage and for d YM/5635: Clinknown (YM/2526) SRS3 - Catalytic subunit of NuX2 histone acetyltransferase complex, influences silenci LEE1 - Product of gene unknown (YEL064W) YML119W - Unknown (YML19W) SUR4 - Required for conversion of 24-oarbon fatty acids to 26-oarbon species (YLR372W YML020W - Unknown (YML020W) RFA3 - DNA replication factor A, 13K subunit (YLL173C) CMK2 - Calcium/calmodulin-dependent serine/threonine protein kinase (CaM kinase) h ADA2, Component of two nucleoscomal histone acetyltransferase complexes: SA6A (S YHS161C) Unknown (YHL161C) REPRA - Reputation protein indived in bud site selection, member of the ras family ir ALPA620C - Unknown (YLR600C) YHS1260C - Protein with similarity to members of the Pirto/Hsp160p/PirGo family (YHF

Goal of Microarray Experiments

• Measure level of gene expression across many different conditions:

Expression Matrix M: {genes}×{conditions}:
 M_{ii} = |gene_i| in condition_i

- Deduce gene function
 - Genes with similar function are expressed under similar conditions
- Deduce gene regulatory networks parts and connections-level description of biology

Analysis of Microarray Data

Clustering

- Idea: Groups of genes that share similar function have similar expression patterns
 - Hierarchical clustering
 - k-means
 - Bayesian approaches
 - Projection techniques
 - Principal Component Analysis
 - Independent Component Analysis

Classification

- Idea: A cell can be in one of several states
 - (Diseased vs. Healthy, Cancer X vs. Cancer Y vs. Normal)
- Can we train an algorithm to use the gene expression patterns to determine which state a cell is in?
 - Support Vector Machines
 - Decision Trees
 - Neural Networks
 - K-Nearest Neighbors

Michael Eisen, 1998

- Hierarchical Agglomerative Clustering
 - Step 1: Similarity score between all pairs of genes
 - Pearson Correlation

$$r = \frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right) \left(Y_{i} - \overline{Y}\right)}{\left(n-1\right) S_{X} S_{Y}}$$

- Step 2: Find the two most similar genes, replace with a node that contains the average
 - Builds a tree of genes
- Step 3: Repeat.
- Can do the same with experiments

Results of Clustering Gene Expression

- CLUSTER is simple and easy to use
- De facto standard for microarray analysis

Time: O(N²M)

N: #genes M: #conditions

- Randomly initialize k cluster means
- Iterate:
 - Assign each genes to the nearest cluster mean
 - Recompute cluster means
- Stop when clustering converges

Notes:

- Really fast
- Genes are partitioned into clusters
- How do we select k?

 Randomly Initialize Clusters

 Assign data points to nearest clusters

 Recalculate Clusters \bigcirc \bigcirc \bigcirc \bigcirc $^{\circ}$

 Recalculate Clusters

• Repeat

• Repeat

• Repeat ... until convergence

Time: O(KNM) per iteration

N: #genes M: #conditions

Multiple-pass K-Means clustering

(A Gasch, MB Eisen 2002)

- Each gene can belong to many clusters
- Soft (fuzzy) assignment of genes to clusters
 - Each gene has 1.0 membership units, allocated amongst clusters based on correlation with means
- Cluster means are calculated by taking the weighted average of all the genes in the cluster

Algorithm:

- Use PCA to initialize cluster means
- 3 applications of k-means clustering, find k/3 clusters per application
 - In each application, start with brand new clusters and initializations
- And a few more heuristic tricks

Initialization

- Use PCA to find a few eigenvectors for initialization
- These features capture the directions of maximum variance
- Must be orthonormal

Initialization

 k/3 centroids defined from k/3 first eigenvectors

Example

• First application of clustering

$$J(F,V) = \sum_{i=1}^{N} \sum_{j=1}^{K} m_{x_{i}v_{j}}^{2} d_{x_{i}v_{j}}^{2}$$

Objective function to minimize, J(F, V)

X genes

F assignment of genes to clusters m_{XV} assign. coeff. of gene X_i to cluster V_j d_{XV} distance of gene X_i with centroid V_j

Iteration of the approach

- Remove genes that have a Pearson Correlation with a particular cluster greater than .7
 - Intuition: These strong signal from these genes has been accounted for

Repeat

Removing Duplicate Centroids

- Remove centroids with Pearson correlation > 0.9
- Allows selecting a large initial number of clusters, since duplicates will be removed

3rd clustering cycle

Repeat 3 times

Output

- 1) Cluster means
- 2) Gene assignments to clusters

- Statistical Significance of Clusters
 Gene Ontology/ KEGG databases
- Regulatory motifs responsible for common expression
- Regulatory Networks
- Experimental Verification

C. Finding Regulatory Motifs

Finding Regulatory Motifs

Given a collection of genes with common expression, Find the TF-binding motif in common

Characteristics of Regulatory Motifs

ΑΤΑΤΑΑΑ ΤΙ Τ CTG-ATA A ACCAG IGACA A GTGA AGGG_GG AGG CG AA_TA_AA AA ____ ΑΑ_ΑΑ ΤΑΑΤΤ G_AA_CG_TTGCG A A TTA A TA A TTAA TAAA T Δ_Δ ~GGGACGAG_G AAAAAATTT A = GA = A = A = AT AIGAA ъA GTTT T TA AAAA SATAT TATA ΑΤταβαααΤΤ

• Tiny

- Highly Variable
- ~Constant Size
 - Because a constant-size transcription factor binds
- Often repeated
- Low-complexity-ish

Sequence Logos

- Height of x at pos'n i, L(a, i) = Prob(a, i) (2 H(i))
 - Examples:
 - Prob(A, i) = 1;
 - A: 1/2; C: 1/4; G: 1/4;

Information at pos'n I, H(i) = $-\Sigma_{\{\text{letter }a\}} \operatorname{Prob}(a, i) \log_2 \operatorname{Prob}(a, i)$

$$H(i) = 0;$$
 L(A, i) = 2
 $H(i) = 1.5;$ L(A, i) = ¹/₄; L(not T, i) = ¹/₄

Given a collection of promoter sequences $s_{1,...}, s_{N}$ of genes with common expression

Probabilistic

Motif: M_{ij} ; $1 \le i \le W$ $1 \le j \le 4$ M_{ii} = Prob[letter j, pos i]

Find best M, and positions p_1, \dots, p_N in sequences

Combinatorial

Motif M: m₁...m_W

Some of the m_i's blank

Find M that occurs in all s_i with $\leq k$ differences

• Find "best" multiple local alignment

Alignment score defined differently in probabilistic/combinatorial cases

Algorithms

Probabilistic

- 1. Expectation Maximization: MEME
- 2. Gibbs Sampling: AlignACE, BioProspector
- Exhaustive CONSENSUS, TEIRESIAS, SP-STAR, MDscan

Discrete Approaches to Motif Finding

Given sequences $S = \{x^1, ..., x^n\}$

- A motif W is a consensus string $w_1 \dots w_K$
- Find motif W^{*} with "best" match to x¹, ..., xⁿ

Definition of "best":

d(W, xⁱ) = min hamming dist. between W and a word in xⁱ d(W, S) = $\sum_i d(W, x^i)$