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Reorder Columns for ClusteringReorder Columns for Clustering
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Topics todayTopics today
1.1. Analyzing clusters for significanceAnalyzing clusters for significance
•• Gene Ontology SignificanceGene Ontology Significance
•• Literature CoherenceLiterature Coherence

2.2. Classification AlgorithmsClassification Algorithms

3.3. Looking for other signals in expressionLooking for other signals in expression
data.data.
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What do we do with clusters?What do we do with clusters?

We have a cluster of genes.We have a cluster of genes.

Besides expression behavior, do theyBesides expression behavior, do they
share any known similarities?share any known similarities?

WouldnWouldn’’t it be great if there was at it be great if there was a
way to tell if these genes are knownway to tell if these genes are known
to perform similar functions?to perform similar functions?

There is.There is.

Copyright Russ B. AltmanCopyright Russ B. Altman

Gene OntologyGene Ontology
(http://www.(http://www.geneontologygeneontology.org/).org/)

Used to classify function in humanUsed to classify function in human
genome draft.genome draft.

A controlled listing of three types ofA controlled listing of three types of
function:function:

•• Molecular FunctionMolecular Function
•• Biological ProcessBiological Process
•• Cellular ComponentCellular Component

Represented as a Directed Acyclic GraphRepresented as a Directed Acyclic Graph
See http://www.See http://www.geneontologygeneontology.org/.org/
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Molecular FunctionMolecular Function
 <molecular_function ; GO:0003674 <molecular_function ; GO:0003674
    %anti-toxin ; GO:0015643%anti-toxin ; GO:0015643
      %lipoprotein anti-toxin ; GO:0015644%lipoprotein anti-toxin ; GO:0015644

    %anticoagulant ; GO:0008435%anticoagulant ; GO:0008435
  %antifreeze ; GO:0016172%antifreeze ; GO:0016172
      %ice nucleation inhibitor ; GO:0016173%ice nucleation inhibitor ; GO:0016173

%antioxidant ; GO:0016209%antioxidant ; GO:0016209
      %glutathione%glutathione reductase  reductase (NADPH) ; GO:0004362 ; EC:1.6.4.2(NADPH) ; GO:0004362 ; EC:1.6.4.2

%% flavin flavin-containing electron transporter ; GO:0015933 %-containing electron transporter ; GO:0015933 % oxidoreductase oxidoreductase\,\,
acting on NADH or NADPH\, disulfide as acceptor ; GO:0016654acting on NADH or NADPH\, disulfide as acceptor ; GO:0016654

      %%thioredoxin reductase thioredoxin reductase (NADPH) ; GO:0004791 ; EC:1.6.4.5(NADPH) ; GO:0004791 ; EC:1.6.4.5
%% flavin flavin-containing electron transporter ; GO:0015933 %-containing electron transporter ; GO:0015933 % oxidoreductase oxidoreductase\,\,
acting on NADH or NADPH\, disulfide as acceptor ; GO:0016654acting on NADH or NADPH\, disulfide as acceptor ; GO:0016654
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Biological ProcessBiological Process
 <biological_process ; GO:0008150 <biological_process ; GO:0008150
  %behavior ; GO:0007610  %behavior ; GO:0007610
   %adult behavior (   %adult behavior (sensu Insectasensu Insecta) ; GO:0008044) ; GO:0008044
    %adult feeding behavior ; GO:0008343 % feeding behavior ;    %adult feeding behavior ; GO:0008343 % feeding behavior ;

GO:0007631GO:0007631
    %response to cocaine ; GO:0008341    %response to cocaine ; GO:0008341
   %chemosensory behavior ; GO:0007635   %chemosensory behavior ; GO:0007635
    %chemosensory jump behavior ; GO:0007636    %chemosensory jump behavior ; GO:0007636
    %proboscis extension reflex ; GO:0007637    %proboscis extension reflex ; GO:0007637
   %feeding behavior ; GO:0007631   %feeding behavior ; GO:0007631
    %adult feeding behavior ; GO:0008343 % adult behavior (    %adult feeding behavior ; GO:0008343 % adult behavior (sensusensu

InsectaInsecta) ; GO:0008044) ; GO:0008044
    %larval feeding behavior ; GO:0008342 % larval behavior (    %larval feeding behavior ; GO:0008342 % larval behavior (sensusensu

InsectaInsecta) ; GO:0007627) ; GO:0007627
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Cellular ComponentCellular Component

 <cellular_component ; GO:0005575 <cellular_component ; GO:0005575
  %cell ; GO:0005623  %cell ; GO:0005623
   %   %ascus ascus ; GO:0005627; GO:0005627
    <    <ascus ascus lipid droplet ; GO:0005633 % lipid particle ;lipid droplet ; GO:0005633 % lipid particle ;

GO:0005811GO:0005811
    <    <prospore prospore membrane ; GO:0005628 % membrane ;membrane ; GO:0005628 % membrane ;

GO:0016020GO:0016020
    <spore wall (    <spore wall (sensu sensu Fungi) ; GO:0005619 % cell wall (Fungi) ; GO:0005619 % cell wall (sensusensu

Fungi) ; GO:0009277 %Fungi) ; GO:0009277 % extracellular  extracellular ; GO:0005576; GO:0005576
     <     <chitosan chitosan layer of spore wall ; GO:0005631layer of spore wall ; GO:0005631
     <     <dityrosine dityrosine layer of spore wall ; GO:0005630layer of spore wall ; GO:0005630
     <inner layer of spore wall ; GO:0005632     <inner layer of spore wall ; GO:0005632
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http://www.geneontology.org/
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Annotation of Human GenomeAnnotation of Human Genome

Copyright Russ B. AltmanCopyright Russ B. Altman

Assessing clusters for presenceAssessing clusters for presence
of GO clustersof GO clusters

(GOOGLE:  GO::(GOOGLE:  GO::TermfinderTermfinder))

1.1. Grab a cluster of genesGrab a cluster of genes

2.2. Enter into website text boxEnter into website text box

3.3. Find out which GO terms are over-Find out which GO terms are over-
represented in the gene cluster.represented in the gene cluster.

4.4. Use this to focus in on likely/possibleUse this to focus in on likely/possible
function of cluster.function of cluster.
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How does it work?How does it work?
(from GO:(from GO:Termfinder Termfinder help pages)help pages)

Model expected distribution of GO terms using aModel expected distribution of GO terms using a
hypergeometric hypergeometric distributiondistribution

((http://mathworld.wolfram.com/HypergeometricDistribution.htmlhttp://mathworld.wolfram.com/HypergeometricDistribution.html))

Given: Population of Given: Population of NN genes genes
Subset of Subset of MM have a particular GO annotation have a particular GO annotation
We sample We sample nn genes genes
We observe We observe xx genes with that annotation genes with that annotation

The probability of seeing those x annotated genes is:The probability of seeing those x annotated genes is:

=
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How does it work?How does it work?

Model expected distribution of GO terms using aModel expected distribution of GO terms using a
hypergeometric hypergeometric distributiondistribution

((http://mathworld.wolfram.com/HypergeometricDistribution.htmlhttp://mathworld.wolfram.com/HypergeometricDistribution.html))

Given: Population of Given: Population of NN genes genes
Subset of Subset of MM have a particular GO annotation have a particular GO annotation
We sample We sample nn genes genes
We observe We observe xx genes with that annotation genes with that annotation

The probability of seeing those x annotated genes is:The probability of seeing those x annotated genes is:

=

Number of ways that x
annotated genes are selected

from M possible annotated
genes

Number of ways n genes
can be sampled from a

total of N genes

Number of ways that n-m
genes without the GO code
can be selected from N-M
total genes without the GO

code
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How to estimate significance ofHow to estimate significance of
this probability?this probability?

What is probability of seeing x *or more* ofWhat is probability of seeing x *or more* of
an annotation out of n samples, given thatan annotation out of n samples, given that
M of N have that annotation?M of N have that annotation?

OR

Probability that x or more
 have the annotation.

Probability that at least x
 have the annotation.
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But we are not asking about the occurrenceBut we are not asking about the occurrence
of a specific GO code, but about allof a specific GO code, but about all

possible GO codespossible GO codes

This raises an important issue of This raises an important issue of ““multiplemultiple
hypothesis testing.hypothesis testing.””

When testing a hypothesis, we often look forWhen testing a hypothesis, we often look for
a probability of being wrong < 0.05, thena probability of being wrong < 0.05, then
1/20 will be false positives.1/20 will be false positives.

If we test 20 hypotheses, then 1 of them isIf we test 20 hypotheses, then 1 of them is
likely to be wrong by chance, so we needlikely to be wrong by chance, so we need
to to ““correctcorrect”” for the large number of tests. for the large number of tests.

Copyright Russ B. AltmanCopyright Russ B. Altman

How to correct for multipleHow to correct for multiple
hypothesis testing?hypothesis testing?

Bonferroni Bonferroni says says ““Divide the p-value by theDivide the p-value by the
number of hypotheses tested.number of hypotheses tested.””

This is VERY conservative, but if something isThis is VERY conservative, but if something is
still significant, it is likely to be true.still significant, it is likely to be true.

There are many other methods for correctionThere are many other methods for correction
(e.g. False Discovery Rate), not discussed(e.g. False Discovery Rate), not discussed
here.here.

Bonferroni Bonferroni assumes that all GO hypotheses areassumes that all GO hypotheses are
independent which is not true, because GOindependent which is not true, because GO
terms are arranged in a tree, and some areterms are arranged in a tree, and some are
more closely related than others.more closely related than others.
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Another method for evaluatingAnother method for evaluating
clusters.clusters.

GO codes are coarse and depend on humanGO codes are coarse and depend on human
annotation.annotation.

How about looking at published literature forHow about looking at published literature for
genes (as the humans do) directly?genes (as the humans do) directly?

Evaluate whether word/concept usage inEvaluate whether word/concept usage in
literature is similar across family of genesliterature is similar across family of genes
in order to evaluate in order to evaluate ““functional coherence.functional coherence.””
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Gene ClustersGene Clusters

Spindle pole formation
Proteasome
mRNA splicing
Glycolysis
Mitochondrial ribosome
ATP synthesis
Chromatin structure
Ribosome/translation
DNA replication
TCA cycle
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Semantically similar articlesSemantically similar articles
refer to related genesrefer to related genes
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Analysis of Analysis of Eisen Eisen ClustersClusters
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Clustering vs. ClassificationClustering vs. Classification

ClusteringClustering uses the primary data to group uses the primary data to group
together measurements, with no informationtogether measurements, with no information
from other sources.  Often calledfrom other sources.  Often called
““unsupervised machine learning.unsupervised machine learning.””

ClassificationClassification uses known groups of interest uses known groups of interest
(from other sources) to learn the features(from other sources) to learn the features
associated with these groups in the primaryassociated with these groups in the primary
data, and create rules for associating thedata, and create rules for associating the
data with the groups of interest.  Oftendata with the groups of interest.  Often
called called ““supervised machine learning.supervised machine learning.””
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Classification AlgorithmsClassification Algorithms
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Graphical RepresentationGraphical Representation

A

B

Two features f1 (x-coordinate) and f2 (y-coordinate)
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ClustersClusters

A

B

Two features f1 (x-coordinate) and f2 (y-coordinate)
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Apply external labels forApply external labels for
classificationclassification

A

B

RED group and BLUE group now labeled
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Classifying LymphomasClassifying Lymphomas
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TradeoffsTradeoffs

Clustering is not biased by previousClustering is not biased by previous
knowledge, but therefore needs strongerknowledge, but therefore needs stronger
signal to discovery clusters.signal to discovery clusters.

Classification uses previous knowledge, soClassification uses previous knowledge, so
can detect weaker signal, but may becan detect weaker signal, but may be
biased by WRONG previous knowledge.biased by WRONG previous knowledge.
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Methods for ClassificationMethods for Classification

•• Linear ModelsLinear Models

•• Logistic Logistic RegressianRegressian

•• NaNaïïve ve BayesBayes

•• Decision TreesDecision Trees

•• Support Vector MachinesSupport Vector Machines
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Linear ModelLinear Model
Each gene, g,  has list of n measurements at eachEach gene, g,  has list of n measurements at each

condition, [f1 f2 f3condition, [f1 f2 f3……fn].fn].

Associate each gene with a 1 if in a group of interest,Associate each gene with a 1 if in a group of interest,
otherwise a 0.otherwise a 0.

Compute weights to optimize ability to predict whetherCompute weights to optimize ability to predict whether
genes are in group of interest or not.genes are in group of interest or not.

Predicted group = SUM [ weight(i) * Predicted group = SUM [ weight(i) * fifi]]

If If fi fi always occurs in group 1 genes, then weight is high.always occurs in group 1 genes, then weight is high.
If never, then weight is low.If never, then weight is low.

Assumes that weighted combination works.Assumes that weighted combination works.
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Linear ModelLinear Model

A

B

PREDICT RED if  high value for A and low value for B,
(high weight on x coordinate, negative weight on y)
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Logistic RegressionLogistic Regression
(intro(intro

http://personal.ecu.edu/http://personal.ecu.edu/whiteheadjwhiteheadj/data//data/logitlogit/)/)
p = probability of being in group of interestp = probability of being in group of interest
f = vector of expression measurementsf = vector of expression measurements

Log[p/(1-p)] = a+Log[p/(1-p)] = a+ββ f f

 or or

p = p = eeββff+a+a/(1+/(1+eeββff+a+a))

Use optimization methods to find Use optimization methods to find ββ (vector) that (vector) that
maximizes the difference between two groups.maximizes the difference between two groups.
Then, can use equation to estimateThen, can use equation to estimate
membership of a gene in a group.membership of a gene in a group.
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Logistic ModelLogistic Model

A

B

PREDICT RED if  high value for A and low value for B,
(high weight on x coordinate, negative weight on y), but with

Sigmoid transition from low prob to high prob.
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Bayes Bayes Rule for ClassificationRule for Classification
BayesBayes’’ Rule:  Rule:  p(hypothesis|data) =  p(hypothesis|data) = 

p(data|hypothesis)p(hypothesis)/p(data)p(data|hypothesis)p(hypothesis)/p(data)

p(group 1| f) = p(f|group1) p(group1)/p(f)p(group 1| f) = p(f|group1) p(group1)/p(f)

p(group 1|f) = probability that gene is in group 1 givep(group 1|f) = probability that gene is in group 1 give
the expression datathe expression data

p(f) = probability of the datap(f) = probability of the data

p(f|group 1) =  probability of data given that gene isp(f|group 1) =  probability of data given that gene is
in group 1in group 1

p(group 1)  = probability of group 1 for a given genep(group 1)  = probability of group 1 for a given gene
(prior)(prior)
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NaNaïïve ve BayesBayes
Assume all expression measurements for a gene areAssume all expression measurements for a gene are

independent.independent.

Assume p(f) and p(group1) are constant.Assume p(f) and p(group1) are constant.

P(f|group 1) = p(f1&f2P(f|group 1) = p(f1&f2……fn|group1)fn|group1)
= p(f1|group1) * p(f2|group1)= p(f1|group1) * p(f2|group1)……* p(fn|group1)* p(fn|group1)

Can just multiply these probabilities (or add their logs),Can just multiply these probabilities (or add their logs),
which are easy to compute, by counting upwhich are easy to compute, by counting up
frequencies in the set of frequencies in the set of ““knownknown”” members of group members of group
1.1.

Choose a cutoff probability for saying Choose a cutoff probability for saying ““Group 1Group 1
member.member.””
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NaNaïïve ve BayesBayes

A

B

If P(Red|x=A) * P(Red| y = 0) = HIGH, so assign to RED
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Decision TreesDecision Trees

Consider an n-dimensional graph ofConsider an n-dimensional graph of
all data points (f, gene expressionall data points (f, gene expression
vectors).vectors).

Try to learn cutoff values for eachTry to learn cutoff values for each
fi fi that separate different groups.that separate different groups.
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Decision TreesDecision Trees
If x  < A and y > B => BLUE

If Y < B OR Y >B and X > A => RED

A

B
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Support Vector MachinesSupport Vector Machines

Draw a line that passes close to the members ofDraw a line that passes close to the members of
two different groups that are the most difficulttwo different groups that are the most difficult
to distinguish.to distinguish.

Label those difficult members the Label those difficult members the ““supportsupport
vectors.vectors.””  (Remember, all points are vectors).  (Remember, all points are vectors).

For a variety of reasons (discussed in the tutorial,For a variety of reasons (discussed in the tutorial,
and the Brown et al paper to some degree), thisand the Brown et al paper to some degree), this
choice of line is a good one for classification,choice of line is a good one for classification,
given many choices.given many choices.
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Support Vectors and Decision LineSupport Vectors and Decision Line

A

B

(One point left out)
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Support Vectors and Decision LineSupport Vectors and Decision Line

A

B

(Bad point put back in…Can penalize boundary line for
bad predictions

PENALTY based on
distance from line
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Choose boundary line that isChoose boundary line that is
closest to both support vectorsclosest to both support vectors

 

1/||w|| 
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Notes about Notes about SVMsSVMs

If the points are not easily separable in nIf the points are not easily separable in n
dimensions, can add dimensions (similar to howdimensions, can add dimensions (similar to how
we mapped low dimensional SOM grid points towe mapped low dimensional SOM grid points to
expression dimensions).expression dimensions).

Dot product is used as measure of distanceDot product is used as measure of distance
between two vectors.  But can generalize to anbetween two vectors.  But can generalize to an
arbitrary function of the features (expressionarbitrary function of the features (expression
measurements) as discussed in Brown andmeasurements) as discussed in Brown and
associated associated Burges Burges tutorial.tutorial.
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Evaluating Yes/No ClassifiersEvaluating Yes/No Classifiers

True PositivesTrue Positives
False PositivesFalse Positives
True NegativesTrue Negatives
False NegativesFalse Negatives

Sensitivity = TP/(TP + FN)Sensitivity = TP/(TP + FN)
Specificity = TN/(TN + FP)Specificity = TN/(TN + FP)
Positive Predictive Value = TP/(TP + FP)Positive Predictive Value = TP/(TP + FP)

ROC Curve = Plot Sensitivity vs. SpecificityROC Curve = Plot Sensitivity vs. Specificity
(or Sensitivity vs. 1-Specificity)(or Sensitivity vs. 1-Specificity)
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Interested in playing with clusterInterested in playing with cluster
and classification methods?and classification methods?

http://www.cs.http://www.cs.waikatowaikato.ac.nz/~ml/.ac.nz/~ml/wekaweka//
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.ARFF format.ARFF format
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Other Analysis ofOther Analysis of Microarray Microarray
DataData

1.1. Reducing the number of genes/conditionsReducing the number of genes/conditions
that need to be consideredthat need to be considered
•• Principal Component Analysis (Principal Component Analysis (Raychaudhuri Raychaudhuri et al, 2000,et al, 2000,

Alter et al, 2000)Alter et al, 2000)
•• Independent Component Analysis (Lee &Independent Component Analysis (Lee & Batzoglou Batzoglou,,

2003)2003)

2.2. CombiningCombining microarray  microarray expressionexpression
experiments with other sources of data toexperiments with other sources of data to
generate more robust hypotheses. (Seegenerate more robust hypotheses. (See
““joint learningjoint learning”” session of http://helix- session of http://helix-
web.stanford.edu/psb05/)web.stanford.edu/psb05/)
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MAGIC (MAGIC (Troyanskaya Troyanskaya et al,et al,
2003, PMID 12826619)2003, PMID 12826619)
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Missing values inMissing values in microarray microarray
data?data?
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Matrix of ExpressionMatrix of Expression
Gene 1

Gene 2

Gene N

Experiment/Conditions 3

E1 E2 E3
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Matrix of ExpressionMatrix of Expression
Gene 1

Gene 2

Gene N

Experiment/Conditions 3

E1 E2 E3

??

??

??

??
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Most algorithms do not work ifMost algorithms do not work if
there are missing values (e.g.there are missing values (e.g.
need to compute distances)need to compute distances)

POTENTIAL SOLUTIONS:POTENTIAL SOLUTIONS:

1.1. Put zeros in all missing valuesPut zeros in all missing values
2.2. Put average of all values that arePut average of all values that are

available = row average or columnavailable = row average or column
averageaverage

3.3. Estimate values based on nearestEstimate values based on nearest
neighbor, or group of K nearest neighborsneighbor, or group of K nearest neighbors

4.4. Estimate value in others ways (e.g.Estimate value in others ways (e.g.
Singular Value Decomposition)Singular Value Decomposition)

Troyanskaya O et al. Missing value estimation meth...[PMID: 11395428]Troyanskaya O et al. Missing value estimation meth...[PMID: 11395428]
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Estimate Missing Values.Estimate Missing Values.

Complete data set Data set with missing
values estimated by
KNNimpute algorithm

Data set with 30% entries
missing (missing values
appear black)
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ConclusionsConclusions

1.1. Methods exist (and are still needed) forMethods exist (and are still needed) for
characterizing clusters that emerge fromcharacterizing clusters that emerge from
high throughput data, such ashigh throughput data, such as
microarraysmicroarrays..

2.2. Gene Ontology is a useful way to gaugeGene Ontology is a useful way to gauge
significant trends.significant trends.

3.3. Classification methods are useful, andClassification methods are useful, and
easily available.easily available.

4.4. Missing data can be imputed, but beMissing data can be imputed, but be
careful careful about over-imputing!about over-imputing!


