
SITE IDENTIFICATION

Problems

1. How to identify functional regions from sequence
data?

2. How to find genes?

3. Sites?

(a) Instances of known sites?

(b) Instances of unknown sites?

Site A short sequence that contains some signal recog-
nized by some enzyme

1. Origins of replication

2. Transcription start and stop sites

3. Promoters, or transcription factor binding sites

4. Introns splice sites

5. . . .

Challenge Instances of a single site will generally not be
identical, but will instead vary slightly

We’ll start with the problem of finding instances of known sites and

finish with the problem of finding instances of unknown sites
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Representation of Known Sites

Suppose we have a large sample A of length n sites, and
a large sample B of length n non-sites. Given a new
sequence s = s1s2 . . . sn. Is s more likely to be a site
or a non-site? If we have an efficient method to do
this, then we can screen an entire genome, testing
every length n substring, and generate a complete
list of candidates sites.

Example of site: the Cyclic AMP receptor protein (or
CRP, a transcription factor in E. Coli.) binds to sites
of length 22. Position 3–9 from 23 CRP binding sites
are shown below

TTGTGGC
TTTTGAT
AAGTGTC
ATTTGCA
CTGTGAG
ATGCAAA
GTGTTAA
ATTTGAA
TTGTGAT
ATTTATT
ACGTGAT
ATGTGAG
TTGTGAG
CTGTAAC
CTGTGAA
TTGTGAC
GCCTGAC
TTGTGAT
TTGTGAT
GTGTGAA
CTGTGAC
ATGAGAC
TTGTGAG

Profile for CRP Binding Sites
A .35 .043 0 .043 .13 .83 .26
C .17 .087 .043 .043 0 .043 .3
G .13 0 .78 0 .83 .043 .17
T .35 .87 .17 .91 .043 .087 .26

The signal is not easy to detect at first glance.
Notice, though, that T predominates in the 2nd and
4th column, and G in the 3rd and 5th column, for
instance. The goal is to capture the most relevant
information from these 23 sites in a concise form.
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Identifying Sites By Probabilities

Profile A of A is a c×n matrix where Ar,j is the fraction
of sequences in A that have residue r in position j,
where c is the number of distinct residues.

In terms of probabilities: let t = t1t2 · · · tn be a random
uniform sequence from A, then
Ar,j = pr(tj = r | t ∈ A).
Ex: AT,2 = pr(t2 = T | t ∈ A)

Independence assumption: Two probabilistic events E

and F are said to be independent if the probability
that they both occur is the product of their individual
probabilities, that is pr(E

⋂
F ) = pr(E) · pr(F ).

Residues at any two positions are uncorrelated

Under the independence assumption, the probability that
a randomly chosen site has a specified sequence
r1r2 · · · rn is: pr(t = t1t2 · · · tn | t is a site) =

∏n
j=1 Arj,j

Example: prob. that a random CRP site is TTGTGAC is
pr(t = TTGTGAC | t is a site) = (.35)(.87)(.78)(.91)(.83)(.83)(.3) =

0.045

If we form a profile B from the sample B of non-sites
we can then test whether a given sequence s is more
likely to be a site or a non-site
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Identifying Sites By Probabilities

Likelihood ratio: Given sequence s = s1s2 · · · sn, the

likelihood ratio, denoted by LR(A, B, s) is defined to

be

pr(t = s | t is a site)

pr(t = s | t is a non-site)
=

∏n
j=1 Asj,j∏n
j=1 Bsj,j

=
n∏

j=1

Asj,j

Bsj,j

Example: Let B = {A, C, G, T}7, the set of all length

seven sequences. The corresponding profile B has

Br,j = 0.25 for all r and j. Then for s = TTGTGAC,

LR(A, B, s) =

∏n
j=1 Asj,j∏n
j=1 Bsj,j

=
0.045

(0.25)7
= 732

Testing a sequence: s is more likely a

1. site: if LR(A, B, s) ≥ L

2. non-site: if LR(A, B, s) < L

Where L is a pre-specified constant cutoff

Log likelihood ratio:

LLR(A, B, s) = log2

n∏
j=1

Asj,j

Bsj,j
=

n∑
j=1

log2
Asj,j

Bsj,j

s is more likely a site if LLR(A, B, s) ≥ log2 L
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Weight Matrix

Weight matrix : a c×n matrix W that assigns a score to
each s = s1s2 · · · sn according to formula

∑n
j=1 Wsj,j

In a log likelihood weight matrix, we have Wi,j = log2
Ar,j
Br,j

.

In order to compute LLR(A, B, s), we only need to add
the corresponding scores from W : LLR(A, B, s) =∑n

j=1 Wsj,j. Example

A .48 −2.5 −∞ −2.5 −.94 1.7 .061
C −.52 −1.5 −2.5 −2.5 −∞ −2.5 .28
G −.94 −∞ 1.6 −∞ 1.7 −2.5 −.52
T .48 1.8 −.52 1.9 −2.5 −1.5 .061
Log likelihood weight matrix for CRP binding sites

We often take Br,jto be the background distribution of
residue r: Br,j is the frequency of r within the entire
genome

Example: given 8 start sites ATG,ATG,ATG,ATG,ATG,GTG,GTG,
and TTG, we assume a uniform background distribu-
tion Br,j = 0.25 then

A .625 0 0
C 0 0 0
G .25 0 1
T .125 1 0

Profile

A 1.32 −∞ −∞
C −∞ −∞ −∞
G 0 −∞ 2
T −1 2 −∞
LLR weight matrix

.701 2 2
Positional relative entropy
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Relative Entropy

How informative is the LLR test for distinguishing be-
tween sites and non-sites? For equal distributions of
A and B every entry in matrix is 0, thus uninformative

Definitions

1. Sample space S: set of all possible values of a
random variables

2. Probability distribution P for a sample space S
assigns a probability P (s) to every s ∈ S satisfying

(a) 0 ≤ P (s) ≤ 1

(b)
∑

s∈S P (s) = 1

3. Relative entropy (or information content) of P

with respect to Qis

Db(P‖Q) =
∑
s∈S

P (s) logb
P (s)

Q(s)

where P, Q are probability distributions on S

4. By convention:

P (s) logb
P (s)

Q(s)
= 0

whenever P (s) = 0

5. Expected value of function f(s) with respect to
probability distribution P on S is

E(f(s)) =
∑
s∈S

P (s)f(s)
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Relative Entropy

Relative entropy measures how different the distribu-
tions of P, Q are. For instance, when they have same
distributions then Db(P‖Q) = 0

To distinguish between sites and non-sites: Db(P‖Q)
must be large

With independence assumption:

Db(P‖Q) =
n∑

j=1

Db(Pj‖Qj)

where Pj and Qj are the distributions imposed by P, Q
at column j

When b = 2 the relative entropy is measured in bits

Example: Previous tables shows the relative entropies D2(Pj‖Qj)
for each residue position j separately

• At position 2, residues A, C, G do not contribute to the
relative entropy (see first table). Residue T contributes
1 ·WT,2 = 2 (see first 2 tables). Hence D2(P2‖Q2) = 2. This
means that there are 2 bits of information in position 2. If
residues are coded as A=00, C=01, G=10 and T=11, then
only 2 bits (11) are necessary to encode the fact that this
residue is always T

• Position 3 has the same relative entropy of 2

• For position 1, the relative entropy is 0.7 so there are 0.7
bits of information, indicating that column 1 (of first table)
is more similar to the background distribution than columns
2 and 3 are

• The total relative of all 3 positions is 4.7
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Effect of Non-Uniform Background Distribution

Consider the same 8 sites but change the background
distribution to BA,j = BT,j = 0.375, BC,j = BG,j =
0.125. The new weight matrix and relative entropy
is given below

A 0.737 −∞ −∞
C −∞ −∞ −∞
G 1 −∞ 3
T −1.58 1.42 −∞
LLR weight matrix

.512 1.42 3
Positional relative entropy

.12 1.3 1.1 1.5 1.2 1.1 .027
Positional relative entropy for CRP binding sites

The relative entropy of each column has changed: last
2 columns have different entropy

The site distribution in position 2 is now more similar to
the background distribution than the site distribution
in position 3 is, since G is rarer in the background
distribution. Thus the relative entropy of position 3
is greater than that of position 2

An interpretation of D2(P3‖Q3) = 3 is that the residue G is 23 = 8
times more likely to occur in the third position of a site than a
non-site.

The total relative entropy is 4.93

Non-negativity of relative entropy: For any probability distributions

P and Q over a sample space S, Db(P‖Q) ≥ 0, with equality if

and only if P and Q are identical
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Finding Instances of Unknown Sites

We are not given a sample A of known sites, but we

want to find sequences that are significantly similar to

each other,without a priori knowledge of what those

sequences look like

Problem: Given a set of sequences, find instances of

a short site that occur more often than you would

expect by chance, with no a priori knowledge about

the site

Given a collection of k such instances, this induces a

profile A. We can also compute a profile B from the

background distribution. From A and B we can com-

pute D2(A‖B) and use that as a measure of how good

the collection is. The goal is to find the collection

that maximizes D2(A‖B).

Relative entropy site selection problem (RESSP): Take

as input k sequences and an integer n, and output

one length n substring from each input sequence,

such that the resulting relative entropy is maximized.

The RESSP is NP-complete
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Finding Instances of Unknown Sites

As example of finding instances of unknown sites, con-
sider the genes involved in digestion in yeast. It is
likely that many of these genes have some transcrip-
tion factors in common and therefore similarities in
their promoters regions. Applying the RESSP to
1000bp DNA sequences upstream of known digestion
genes may well yield some of these promoters.

As defined, RESSP limits its solution to contain exactly
one site per input sequence, which may not be real-
istic in all applications. In some applications, there
may be zero or many sites in some of the input se-
quences.

Effects on relative entropy of increasing the number of
sites or length of each site

• Increasing the number of site will not increase the relative
entropy, which is a function only of the fraction P (s) of sites
containing each residue s, and not the absolute number of
such sites. The relative entropy measures the degree of
conservation

• Increasing the length n of each site does increase the rel-

ative entropy, as it is additive and always non-negative. If

comparing relative entropies of different length sites is im-

portant, one may normalize by dividing by the length n of

the site or, alternatively, subtracting the expected relative

entropy from each position.
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Greedy Algorithm

The algorithm picks the locally best choice at each step without
concern for the impact on future choices. In most applications,
the greedy method will result in solutions that are far from opti-
mal, for some input instances. However, it does work efficiently,
and may produce good solutions on many inputs instances

The user specifies a maximum number d of profiles to retain at
each step. profiles with lower relative entropy scores than the
top d will be discarded; this is precisely the greedy aspect of the
algorithm

Algorithm {Assumes single-site per sequence}
Input: sequences s1, s2, . . . , sk, and n, d, and the background
distribution

1. Create a singleton set for each possible length n substring
of each of the k input sequences

2. For each set S retained so far, add each possible length n
substring from an input sequence si not yet represented in
S. Compute the profile and relative entropy with respect to
the background for each new set. Retain the d sets with the
highest relative entropy

3. Repeat step 2 until each set has k members

Pruning the number of sets to d is crucial, in order to avoid the

exponentially many possible sets. The greedy nature of this

pruning biases the selection from the remaining input sequences.

High scoring profiles chosen from the first few sequences may

not be well represented in the remaining sequences, whereas

medium scoring profiles may be well represented in most of the

k sequences, and thus would have yielded superior scores

11



Gibbs Sampler

Idea: Start with a complete set of k substrings, from
which we iteratively remove at random, and then add
a new one at random with probability proportional to
its score, hopefully resulting in an improved score.

Algorithm {Assumes single-site per sequence}
Input: sequences s1, s2, . . . , sk, n, and the background
distribution
Initialize set T to contain substrings t1, t2, . . . , tk, where
ti is a substring of si chosen randomly and uniformly.
Then perform a series of iterations, each of which
consists of the following steps:

1. Choose i randomly and uniformly from {1,2, . . . , k}
and remove ti from T

2. For every j in {1,2, . . . , |si| − n + 1}:

(a) Let tij be the length n substring of si that starts at position
j.

(b) Compute Dj, the relative entropy of T
⋃
{tij} with respect

to the background

(c) Let Pj = Dj∑
h
Dh

3. Randomly choose ti to be tij with probability Pj,
and add ti to T

We iterate until a stopping condition is met, either a fixed number

of iterations or relative stability of the scores, and return the

best solution set T seen in all iterations
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