PLDs (combinatorial circuits): ROM, PLA, PAL, CPLD, and FPGA

Store *permanent* binary information (nonvolatile). Can be read only (cannot be altered). Information is specified by designer and *physically inserted* (embedded) into the PLD.

Programmable connections are formed by *fuses*, *masks*, or *antifuses* depending on the technology. Irreversible programming.
k inputs (address) \Rightarrow $2^k \times n$ ROM \Rightarrow n outputs (data)

- $k \times 2^k$ decoder to decode input address

- n OR gates with 2^k input each

- Decoder output is connected to all n OR gates through fuses

- ROM \rightarrow $2^k \times n$ programmable connections
Programming a ROM

Example of 4×2 ROM

<table>
<thead>
<tr>
<th>Truth table</th>
<th>NonProgrammed ROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Content</td>
</tr>
<tr>
<td>I_1</td>
<td>I_0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Programmed ROM

Compact ROM

Truth table \rightarrow address and content of ROM

Programming \rightarrow stores truth table in ROM

- 0 = Open connection = Fuse blown
- 1 = Closed connection = Fuse intact
Any set of functions $f_1(x_k, \ldots, x_1), \ldots, f_n(x_k, \ldots, x_1)$ can be realized with a $2^k \times n$ ROM.

Example: Implement $f_1(x_2, x_1) = \sum m(0, 3)$, $f_2(x_2, x_1) = x_2 + x_1$, and $f_3(x_2, x_1) = \prod M(1)$ with a 4×3 ROM.

<table>
<thead>
<tr>
<th>Address</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_2</td>
<td>x_1</td>
</tr>
<tr>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td></td>
</tr>
<tr>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>1 1</td>
<td></td>
</tr>
</tbody>
</table>

4 \times 3 ROM storing f_1, f_2, f_3
Programmable Logic Array

Behave like a ROM but has different structure

- Uses ANDs array instead of decoder to produce product terms of inputs

- Has programmable connections before ANDs, between ANDs and ORs, after ORs. That is $2nk + km + m$ fuses

- More flexible than ROM but more difficult to program

- Logic expressions for content information to be stored in PLA must be obtained first, then minimized, and finally programmed into the PLA using a PLA program table

- PLA program table specifies product terms and sum terms of information that will be stored in PLA
Programming a PLA

PLA Program Table

<table>
<thead>
<tr>
<th>Term</th>
<th>Term#</th>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>1</td>
<td>1 0 _</td>
<td>1 _</td>
</tr>
<tr>
<td>AC</td>
<td>2</td>
<td>1 _ 1</td>
<td>1 1</td>
</tr>
<tr>
<td>BC</td>
<td>3</td>
<td>_ 1 1</td>
<td>_ 1</td>
</tr>
<tr>
<td>\overline{ABC}</td>
<td>4</td>
<td>0 1 0</td>
<td>1 _</td>
</tr>
</tbody>
</table>

Corresponding PLA Implementation

X Fuse intact
+ Fuse blown
Any set of functions $f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)$ can be realized with a PLA.

Example Implement $f_1(a, b, c) = \sum m(3, 5, 6, 7)$ and $f_2(a, b, c) = \sum m(0, 2, 4)$ with a PLA.

First Simplify $f_1, \overline{f_1}, f_2, \overline{f_2}$, that is

- $f_1(a, b, c) = ab + ac + bc$ \quad $f_1, f_2 \rightarrow 5$ terms
- $\overline{f_1}(a, b, c) = \overline{ab} + \overline{ac} + \overline{bc}$ \quad $f_1, \overline{f_2} \rightarrow 4$ terms
- $f_2(a, b, c) = \overline{ac} + \overline{bc}$ \quad $\overline{f_1}, f_2 \rightarrow 3$ terms
- $\overline{f_2}(a, b, c) = ab + c$ \quad $\overline{f_1}, \overline{f_2} \rightarrow 5$ terms

Second Select combination of functions that has less terms, that is

- $f_1 = \overline{f_1} = \overline{ab} + \overline{ac} + \overline{bc}$
- $f_2(a, b, c) = \overline{ac} + \overline{bc}$

Third Construct a PLA program table from selected functions

<table>
<thead>
<tr>
<th>Term</th>
<th>Term#</th>
<th>Inputs a b c</th>
<th>Outputs f_1 f_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{ab}</td>
<td>1</td>
<td>0 0 _</td>
<td>1 _</td>
</tr>
<tr>
<td>\overline{ac}</td>
<td>2</td>
<td>0 _ 0</td>
<td>1 1</td>
</tr>
<tr>
<td>\overline{bc}</td>
<td>3</td>
<td>_ 0 0</td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C T</td>
</tr>
</tbody>
</table>
Function Synthesis with PLA
(continued)

Third Construct a PLA program table from selected functions

<table>
<thead>
<tr>
<th>Term</th>
<th>Term#</th>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{ab}</td>
<td>1</td>
<td>0 0 _</td>
<td>1 _</td>
</tr>
<tr>
<td>\overline{ac}</td>
<td>2</td>
<td>0 _ 0</td>
<td>1 1</td>
</tr>
<tr>
<td>\overline{bc}</td>
<td>3</td>
<td>_ 0 0</td>
<td>1 1</td>
</tr>
</tbody>
</table>

Fourth Construct PLA circuit from PLA program table

![PLA Circuit Diagram](image-url)
Programmable Array Logic

Similar to PLA

- Only the connection inputs to ANDs are programmable
- Easier to program than but not as flexible as PLA
- There are feedback connections
- Logic expressions for content information to be stored in PAL must be obtained first, then minimized, and finally programmed into the PAL using a PAL program table
- PAL program table specifies only product terms of information that will be stored in PAL
Programming a PAL

AND gates inputs

Product term

1
2
3
4
5
6
7
8
9
10
11
12

A
B
C
D

W

X

Y

Z

All fuses intact
(always = 0)

X Fuse intact

+ Fuse blown
Essential element of the Central Processing Unit

Arithmetic and logic functions on binary words

- n-bit data inputs A and B
- n-bit data output $G = f(A, B)$
- Selection inputs S_0, S_1 select a function f
- Selection input S_2 select an operating mode (arithmetic or logic)
ALU
(continued)

Logic Circuit

(a) Logic Diagram

<table>
<thead>
<tr>
<th>S_1</th>
<th>S_0</th>
<th>Output</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>$G = A \land B$</td>
<td>AND</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>$G = A \lor B$</td>
<td>OR</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$G = A \oplus B$</td>
<td>XOR</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>$G = \overline{A}$</td>
<td>NOT</td>
</tr>
</tbody>
</table>

(b) Function Table

Arithmetic Circuit

Input logic

n-bit parallel adder

$G = X + Y + C_{in}$

C_{out}
ALU
(continued)
ALU
(continued)

Arithmetic and Logic Circuit

One stage of arithmetic circuit

One stage of logic circuit

2-to-1 MUX

C_1

A_i

B_i

S_0

S_1

S_2

C_{i+1}

G_i