PROGRAMMABLE LOGIC DEVICES

PLDs (combinatorial circuits): ROM, PLA, PAL, CPLD, and FPGA

Store *permanent* binary information (nonvolatile). Can be read only (cannot be altered). Information is specified by designer and *physically inserted* (embedded) into the PLD

Programmable connections are formed by *fuses*, *masks*, or *antifuses* depending on the technology. Irreversible programming

Read-Only Memory $2^k \times n$ ROM k inputs n outputs (address) (data) 32×8 ROM 0 1 I₀ -2 I. 3 5-to-32 .وا decoder I_{3 -} 28 29 <u>ا</u>ړ -30 31 A_4 A_7 A_6 A_5 A_3 A_2 A₁ A₀

- $k \times 2^k$ decoder to decode input address
- n OR gates with 2^k input each
- Decoder output is connected to all $n\ {\rm OR}$ gates through fuses
- ROM $\rightarrow 2^k \times n$ programmable connections

Programming a ROM

Truth table \rightarrow address and content of ROM

 $\ensuremath{\text{Programming}}\xspace \rightarrow$ stores truth table in ROM

- 0 = Open connection = Fuse blown
- 1 = Closed connection = Fuse intact

Function Synthesis with ROM

Any set of functions $f_1(x_k, \ldots, x_1)$, ..., $f_n(x_k, \ldots, x_1)$ can be realized with a $2^k \times n$ ROM

Example: Implement $f_1(x_2, x_1) = \sum m(0, 3)$, $f_2(x_2, x_1) = \overline{x_2 + x_1}$, and $f_3(x_2, x_1) = \prod M(1)$ with a 4×3 ROM

Programmable Logic Array

Behave like a ROM but has different structure

- Uses ANDs array instead of decoder to produce product terms of inputs
- Has programmable connections before ANDs, between ANDs and ORs, after ORs. That is 2nk + km + m fuses
- More flexible than ROM but more difficult to program
- Logic expressions for content information to be stored in PLA must be obtained fisrt, then minimized, and finally programmed into the PLA using a PLA program table
- PLA program table specifies product terms and sum terms of information that will be stored in PLA

Programming a PLA

PLA Program Table						
		Inputs			Outputs	
Term	Term#	A	B	C	F_1	F_2
$A\bar{B}$	1	1	0	_	1	_
AC	2	1	_	1	1	1
BC	3	_	1	1	_	1
$\bar{A}B\bar{C}$	4	0	1	0	1	—
					Т	С

Function Synthesis with PLA

Any set of functions $f_1(x_1, \ldots, x_n)$, ..., $f_m(x_1, \ldots, x_n)$ can be realized with a PLA

Example Implement $f_1(a, b, c) = \sum m(3, 5, 6, 7)$ and $f_2(a, b, c) = \sum m(0, 2, 4)$ with a PLA

First Simplify $f_1, \overline{f_1}, f_2, \overline{f_2}$, that is

$f_1(a, b, c) = ab + ac + bc$	$f_1, f_2 \rightarrow 5$ terms
$\bar{f}_1(a,b,c) = \bar{a}\bar{b} + \bar{a}\bar{c} + \bar{b}\bar{c}$	$f_1, \overline{f}_2 \rightarrow 4$ terms
$f_2(a,b,c) = \bar{a}\bar{c} + \bar{b}\bar{c}$	$\bar{f}_1, f_2 ightarrow$ 3 terms
$\bar{f}_2(a,b,c) = ab + c$	$\bar{f}_1, \bar{f}_2 ightarrow 5$ terms

- Second Select combination of functions that has less terms, that is $f_1 = \overline{f_1} = \overline{a}\overline{b} + \overline{a}\overline{c} + \overline{b}\overline{c}$ $f_2(a, b, c) = \overline{a}\overline{c} + \overline{b}\overline{c}$
- Third Construct a PLA program table from selected functions

		Inputs			Outputs	
Term	Term#	a	b	С	f_1	f_2
$\overline{a}\overline{b}$	1	0	0	_	1	_
$\overline{a}\overline{c}$	2	0	_	0	1	1
$\overline{b}\overline{c}$	3	_	0	0	1	1
					С	Т

Function Synthesis with PLA (continued)

Third Construct a PLA program table from selected functions

		Inputs			Outputs	
Term	Term#	a	b	С	f_1	f_2
$\overline{a}\overline{b}$	1	0	0	_	1	_
$ar{a}ar{c}$	2	0	_	0	1	1
$\overline{b}\overline{c}$	3	_	0	0	1	1
					С	Т

Fourth Construct PLA circuit from PLA program table

Programmable Array Logic

Similar to PLA

- Only the connection inputs to ANDs are programmable
- Easier to program than but not as flexible as PLA
- There are feedback connections
- Logic expressions for content information to be stored in PAL must be obtained fisrt, then minimized, and finally programmed into the PAL using a PAL program table
- PAL program table specifies only product terms of information that will be stored in PAL

Programming a PAL

Arithmetic-Logic Unit

Essential element of the Central Processing Unit

Arithmetic and logic functions on binary words

- n-bit data inputs A and B
- *n*-bit data output G = f(A, B)
- Selection inputs S_0, S_1 select a function f
- Selection input S₂ select an operating mode (arithmetic or logic)

ALU (continued)

ALU (continued)

