COMBINATIONAL CIRCUITS I

(Adders, Decoders, Multiplexers)

CC are circuits without memory where the outputs are obtained from the inputs only. A n-input m-output combinational circuit is of the form

where, $o_{i}=f\left(i_{1}, \ldots, i_{n}\right), 1 \leq i \leq m$.

- Half/Full adder/substractor
- Binary ripple adder/substractor
- Look-ahead carry adder
- Code converter, Encoder/Decoder
- Magnitude comparator
- Multiplexer/Demultiplexer
- Read-only memory
- Programmable logic array
- Programmable array Iogic
- Arithmetic logic unit

Half Adder Adds 2 bits and outputs carry and sum

Full Adder Adds previous carry and 2 bits and outputs new carry and sum

K-map for c

x	y	z	c	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$x \backslash y z$	00	01	1		10
0					
1		1			1
	$c=$				

\mapsto
K-map for s

$x \backslash y z$	00	01	11	10	
0		1			1
1	1		1		
	$s=$				

Binary Ripple Carry Adder

Adds $2 n$-bit numbers and outputs carry-out and sum

n FAs are connected in cascade

Input carry of $\mathrm{FA}_{i}=$ output carry of FA_{i-1}

Simple, easy and cheap design

Reusable

Very slow

Can you design a faster n-bit adder circuit?

Can you design a smaller n-bit adder circuit?

Carry Lookahead Adder

Faster than BRCA but more complex FA $=$ Partial Full Adder + Ripple Carry Path

So for a 4-bit BRCA we have 8 gate delays in the RCP

A solution to BRCA problem is to replace the RCP by a two-level circuit (2 gate delays)

How: Each C_{i} is a function of G_{i-1}, P_{i-1} and C_{i-1}, that is $C_{i}=f\left(G_{i-1}, P_{i-1}, C_{i-1}\right)=G_{i-1}+P_{i-1} C_{i-1}$.
Generate a SOP expression for each C_{i} and obtain its two-level circuit implementation.

Carry Lookahead Adder (continued)

$$
\begin{aligned}
& C_{i}=G_{i-1}+P_{i-1} C_{i-1} \text { for } 1 \leq i \leq n \\
& C_{1}= G_{0}+P_{0} C_{0} \\
& C_{2}= G_{1}+P_{1} C_{1} \\
&= G_{1}+P_{1}\left(G_{0}+P_{0} C_{0}\right) \\
&= G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0} \\
& C_{3}= G_{2}+P_{2} C_{2} \\
&= G_{2}+P_{2}\left(G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0}\right) \\
&= G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{0} \\
& C_{4}= G_{3}+P_{3} C_{3} \\
&= G_{3}+P_{3}\left(G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{0}\right) \\
&= G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0} \\
&+P_{3} P_{2} P_{1} P_{0} C_{0} \\
&= G_{0 \ldots 3}+P_{0 \ldots 3} C_{0} \\
&= G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0} \\
& G_{0 \ldots 3}= P_{3} P_{2} P_{1} P_{0} \\
& P_{0 \ldots 3}=
\end{aligned}
$$

- $P_{i}=$ Propagate funtion: propagate a carry from position i to $i+1$
- $G_{i}=$ Generate funtion: generate a carry in position i
- $P_{0 \ldots 3}=$ Group propagate funtion
- $G_{0 \ldots 3}=$ Group generate funtion

Four-Bit Carry Lookahead Circuit

4-bit FAs with carry lookahead circuit

More expensive than RCP but much more faster

4-bit CLAs can be used to implement circuits for adding $8,12,16, \ldots, 4 n$-bit numbers

Substractors

Half Substractor, Full Substractor, Binary Ripple Borrow Substractor and Borrow Lookahead Substractor can be defined in the same way as done for the adders. Instead of carry and sum we have borrow and difference, and different truth table and circuits

Exercise to submit in next lab Define and implement a Half Substractor, a Full Substractor and a Binary Ripple Borrow Substractor. You'll have a bonus if you implement a Borrow Lookahead Substractor. Note: it'll be marked

Do we really need substractor circuits?

If not then how can we implement substraction operation?

Hint: Remember the relationship between binary addition and binary substraction operations

Adder-Substractor Circuit

Circuit is a

Adder When $S=0$:
$A+B$

Substractor When $S=1$:
$A+(2 \mathrm{CF}$ of $B)=A-B$

